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Abstract

The theoretical and numerical analyses of inelastic impacts of elastic materi-
als are presented. We construct the two-dimensional impact model based on the
spring-mass model and simulate normal and oblique impacts to investigate how
initial condition affects coefficients of normal and tangential restitution. At first,
we demonstrate the low speed impact of the elastic disk on the structureless wall.
In this case, our numerical results of the relation between the colliding speed and
the compressive force could not be reproduced by the quasi-static theory while
the relation between the duration and the colliding speed could reproduced by
two-dimensional Hertzian impact theory. In addition, in high speed impacts, we
found the abrupt decrease of the coefficient of restitution(COR) by the plastic de-
formation of the model around the critical impact velocity which seems to be a
simple linear function of temperature. We also demonstrate the normal impact of
an elastic disk on an elastic wall, in which COR decreases as the thickness of the
wall increases.

In addition, we carry out the simulation of the oblique impact. Using a two-
dimensional random lattice model of an elastic disk and an elastic wall, we inves-
tigate the relation between the coefficient of tangential restitution and the incident
angle. Our numerical results can be well reproduced by the present phenomeno-
logical theory of oblique impacts. Finally, we demonstrate that the coefficient of
normal restitution can exceed unity and have a peak at an incident angle in our
simulation of the oblique impact. Similar tendency is also observed in the exper-
iment by Louge and Adams(2002), in which COR can be expressed as a linear
function of the magnitude of the tangent of the incident angle. We explain our
numerical results based upon the phenomenological theory.
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Chapter 1

General introduction

The object of the present dissertation is to investigate the relation between the
initial condition of colliding material and its coefficients of both normal and tan-
gential restitution theoretically with the aid of computer simulation. In this disser-
tation, we carry out numerical simulation of two-dimensional impacts of elastic
material and compare the numerical results with early experimental results. In
addition, we attempt to explain our numerical results by the phenomenological
theories of impacts.

We can see many examples of impact around us. In microscopic level, atoms
and molecules are colliding each other in atmosphere while in macroscopic level
meteorites are colliding in cosmic space. Also in our daily life, we can see base-
balls, billiard balls, hammers and nails, and so on. In the fields of mechanical
engineering and sports science, it is important to control mechanical shock of im-
pacts. For example, internal structure of balls and bats of baseball are designed to
control rebound of balls. In the engineering of vehicle, chassis of cars is designed
to avoid damage to passengers as possible in traffic accidents.

In general, theoretical prediction of post-collisional state of macroscopic col-
liding materials is difficult because actual collision occurs in finite duration ac-
companying deformation, fracture, sound emission, thermalization, and so on. In
such a collision, a part of initial energy of colliding materials is distributed into
some degrees of freedom during duration. We call such the collision as an inelas-
tic collision. When we consider a physical process of collision from the viewpoint
of energy dissipation, the following questions will arise naturally:

1. What is the dominant mechanism of energy dissipation?

2. How are post-collisional quantities decided from the initial condition of col-
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liding material?

Because of difficulties in measuring physical quantities during impact process,
many problems including above questions are left to be open.

To characterise post-collisional physical state, the coefficient of restitution(COR)
is often used. The definition of COR e in normal collision is given by

e=—-"2, (1.1)

where v,, and v,, are the normal components of relative velocities of center of
mass before and after collision, respectively. COR indicates the amount of energy
dissipation of the colliding material because it is also defined by the square root
of the ratio of translational energy before collision to that after collision. COR
firstly appears in Principia[l] by Newton as the ratio of a rebound speed to a
impact speed in normal collisions. Newton suggested that COR is independent
of the size and the relative colliding speed of materials. However, it has been
clarified that COR depends on the pre-collisional state of a colliding material in
many experiments[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. New-
ton defined COR as just the ratio of the normal speed before collision to that
after collision. However, if we want to know how COR is determined from the
pre-collisional state, we need to investigate the process of energy dissipation be-
cause COR is determined through the process of energy dissipation in a finite
duration. Clarifying the process of energy dissipation and the mechanism of de-
termination of COR are important not only for engineering and science but also
for elementary physics. COR plays an important role also in computer simulation
of various fields of engineering. For example, in the fields of powder engineer-
ing, chemical engineering, civil engineering, and earth science, Distinct Element
Method (DEM) is a popular simulation method[18] to describe behaviors of gran-
ular materials[19, 20, 21, 22, 23]. In DEM, COR is included as a function of
phenomenological parameter. Clarifying the mechanism of determining COR will
give the theoretical foundation of DEM and improve the precision of calculation.

The goal of our research is to specify the dominant mechanism of dissipation
in impacts of materials with various Kinetic states. In this dissertation, we will
show numerical results of two-dimensional simulation of impacts of an elastic
disk on an elastic wall and some theoretical analysis of the results.



1.1 History of impact studies

In this section, we review the history of impact studies. After the introduction of
COR by Newton, many impact experiments were carried out to measure COR of
various kinds of material. Hodgikinson carried out impact experiments of various
kinds of materials and measured COR against some impact velocities[8]. In his
paper[8], he referred to the decreasing tendency of COR against the increasing
impact velocity though COR had been believed to be constant value. At the end
of the 19th century, it became clear experimentally that COR systematically de-
pends on the relative velocity of the colliding materials[10]. In the text book of
Goldsmith[14], many experimental data of various kinds of materials about the re-
lation between impact velocity and COR are shown. Generally, COR decreases as
impact velocity increases. However, the behavior of COR for low impact velocity
and that in high impact velocity are believed to be quite different. For exam-
ple, Sondergaard et al. performed an impact experiment of ball bearings and glass
spheres on lucite or aluminum plates and confirmed the dependency on the impact
velocity as e o« v~/ in the high speed impact[15]. Later, physical mechanism of
this behavior has been explained by the dimensional analysis[24, 25]. Kuwabara
and Kono performed impact experiment of two pendulums [26]. They made two
spheres of various materials (steel, glass, brass, and cork) collide each other with
the low impact velocity v = 0.5m/s. Their experimental results may be consistent
with their theoretical prediction 1 — e oc v'/° by the quasi-static argument.

On the other hand, the dependency of coefficient of tangential restitution on
incident angle in oblique collisions was investigated both experimentally and the-
oretically. Coefficient of tangential restitution /3 is defined as

!

vt(c)

= ——— 1.2
g=—" (L2)

t

where ,Ut(c) and vfc)' are tangential components of impact velocities of the contact
point before and after collision, respectively. Maw et al. have formulated the
theory of oblique impacts of elastic material[27, 28, 29]. They assumed normal
and tangential force acting on a contact point of two contacting materials as linear
springs with two different frequencies. The validity of the theory was confirmed
by many experimental results [6, 28, 30].

Meanwhile, Walton gives a simple argument of oblique impacts by introducing
three phenomenological parameters: the coefficient of normal restitution e, the
coefficient of Coulomb’s friction p, and the maximum value of the coefficient
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of tangential restitution 3,[31, 32]. Details of Walton’s argument are shown in
chapter 4 and appendix A. Experiments have supported that his characterization
adequately captures the essence of binary collisions of metal spheres or collision
of a metal sphere on a flat plate [4, 5, 6, 7].

Later, systematic investigation of COR in normal impacts with quasi-static
theory was developed by Kuwabara and Kono[26]. They investigated COR for
low speed impact by solving the equation of macroscopic deformation of collid-
ing spheres taking into account the viscous motion among the internal degrees of
freedom and derived the theoretical expression 1 — e oc v/°. Their theoretical
results can reproduce their experimental results [26]. After their work, some pa-
pers about quasi-static theory have been published which are consistent with the
results of Kuwabara and Kono[33, 34, 35, 36]. Brilliantov et al.[33] derived simi-
lar expression for time evolution of macroscopic deformation to that of Kuwabara
and Kono and compared its results with the experimental results by Bridges et al.
[2]. Also, Morgado and Oppenheim[34] derived similar expression for binary col-
lision of two identical spheres from different approach and showed consistency to
the results of Kuwabara and Kono. Thus, quasi-static theory is believed to capture
the essence of low speed impact.

Recently, Gerl and Zippelius performed a two-dimensional simulation of col-
lision of an elastic disk with an elastic wall[37]. Hayakawa and Kuninaka per-
formed two-dimensional simulations and confirmed that elastic models includ-
ing that of Gerl and Zippelius is not appropriate to characterize the quasi-static
impact[38, 39, 40, 41]. Some discussions about this tendency will appear in this
dissertation later. In addition, COR in oblique impacts has been investigated.
While COR has been believed to be less than unity in most situations, it is recently
reported that COR can exceed unity in oblique impacts in some experimental and
numerical studies [30, 42, 43, 44]. In particular, Louge and Adams[30] reported
that COR increases as a linear function of the magnitude of tan~y in the oblique
impact of a hard aluminum oxide sphere on a thick elastoplastic plate with the
incident angle ~. This novel and anomalous behavior of COR will be discussed
in chapter 5. Apart from impacts between solids, impact experiments such as a
sphere on a liquid surface[45], liquid marbles on flat surfaces[46], and a sphere
on granular material[47] are also carried out recently.



1.2 Theoretical approach toimpact problems. quasi-
static theory

Here, we review quasi-static theory which is one of theoretical approaches to im-
pact problems. We focus on the normal impact with low impact speed. As men-
tioned in the last section, in low speed impact, quasi-static theory is believed to be
valid. Quasi-static theory is based on the Hertzian contact theory[48, 49, 50, 51].
Hertzian contact theory describes relative normal deformation of two spheres in
contact while Mindlin theory describes relative tangential deformation [52, 53].
Here, we briefly review Hertzian contact theory[48, 49, 50, 51] firstly, and extend
it to quasi-static theory.

Let us consider that two spheres with radii £, and R, are in contact under
elastic force F,, each other. From Hertzian contact theory, the macroscopic de-
formation A and the radius of contact area a can be expressed as a function of F,
as

1 1
h o= FY3 [D2 <R_1 + R—2>] and (1.3)
RR
— Y |p—2_ 1.4
a el [ Rl +R2 b ( )

where D = (3/4) [(1 — v})/E\ + (1 — v2)/Es], Ey and v, are Young’s modulus
and Poisson’s ratio for sphere 1 and F, and v, are for sphere 2. Thus, elastic
energy U can be calculated by integrating F; by h as

2D [ RR, 1'*
U=npl= | 2 . 15
5 | R+ Ry (15)
Dynamic equation for a collision of two elastic spheres can be derived as
o R
meff@ + ZHCh / = 0, (16)

where x, = (4/5D)[RiRy/(Ry + Ry)]/%, tis time, and me;p = 1/my + 1/ma.
Solving Eq.(1.6), we can calculate COR from the ratio of dh/dt after collision to
that before collision. However, in elastic case, COR equals to unity according to
energy conservation.

In the two-dimensional case, the relation between the macroscopic deforma-
tion of the center of mass / and the elastic force F; is

Fel 4’/TE*R
h__ﬂ'E* {ln( T, )—1—1/}, 1.7)




where E, = E/(1 — v?). If h is given, we can calculate numerically two-
dimensional F,, from Eq.(1.7).

In quasi-static theory, total compression force is expressed by the sum of the
elastic force F,; and the dissipative force Fy;, which is introduced as a function
proportional to dh/dt. Kuwabara and Kono considered Fy;; comes from internal
friction of spheres and obtained its explicit form as Fy, = —(5/2)/%6\/Edh/dt,
where i, = (4/5D') [R1Ry/ Ry + Ry]"/? and D' is a constant calculated from co-
efficient of viscosity associated with volume deformation and shear. The equation
of the macroscopic deformation is given by

2
meff% + gﬁch3/2 + gfic\/ﬁ% = 0. (1.8)
By solving this equation with adequate initial condition, they obtain the relation
between e and initial speed v as

- 1/5
e~ 1—1.009% 2F | —— | . (1.9)
2 /igmeff

Note that the value of 1 — e is proportional to v'/5 1. Later, identical equations to
Eq.(1.8) were derived in some studies from different approaches [33, 34, 35, 36].
In the two-dimensional case[37, 39], the total force may be given by

TE.h TE, dh
J— 7‘ _

In(4R/h)  “In(4R/h) dt’
where 7, represents the time scale for dissipation, when the deformation is small.
Replacing the logarithmic term as a constant correction, the equation for elastic

motion can be solved as in the three dimensional case. Thus, we may evaluate the
duration ¢, as

Fior ~ — (1.10)

4
TR e (1.12)
C v

tf ~
where ¢ = /FE.,/p and p are the compressive sound velocity and the density, re-

spectively. We note that we adopt a bold approximation: 1* ~ vR+/(p/E.) In(4R/h) ~
vR/c. Including dissipative force as before, this approximation gives

21 B,
e~ [1— . 1.12
\/ pRe/In(4c/v) (1.12)

1Recently, Hayakawa and Kuninaka[54] obtained same result by the analysis taking the effect
of radiation of elastic waves into account [55, 56, 57, 58].
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1.3 Numerical approach

As a numerical study to investigate the relation between COR and initial veloc-
ity, Gerl and Zippelius performed two-dimensional simulation with a continuum
model[37]. Their simulation is mainly based on the mode expansion of an elastic
disk under the force free boundary condition. They do not introduce any dissi-
pative mechanism in the microscopic equation of motion of the disk. They solve
Hamilton’s equation determined by the elastic field and the repulsive potential to
represent the collision of two disks. Their results show that COR decreases with
increasing impact velocity and strongly depends on Poisson’s ratio.

On the other hand, some studies about binary collision of two one-dimensional
bars exist [59, 60, 61, 62, 63, 64]. In one-dimensional case, COR is believed to be
equal to the ratio of the lengths of two colliding bars.

There exist some numerical studies of impact using FEM (Finite Element
Method) which is used in the field of engineering [42, 65, 66, 67]. Lim and
Stronge carried out 2D analysis of a cylinder colliding transversely against an
elast-plastic half space using the finite element code, DYNA2DI[65]. They showed
that their numerical results can be reproduced by the theoretical result by Johnson[25].
It has been also reported that 3D FEM analysis can reproduce experimental data
of binary collision of metal spheres[66].

Our numerical models are based on spring-mass models which are often used
in physical modeling of deformable objects (see Ref.[68], for example). We can
calculate the movement of deformable objects by expressing them as a network
of mass points and springs and calculating spring forces between mass points.
Spring-mass models have some advantages:

1. The modeling is intuitive.
Simulation can be easily carried out on personal work stations.

The model can represent various shapes of material.

A won

It can represent fracture of objects by introducing breaking rule of springs.

5. Physical gquantities in objects such as temperature distribution and stress
distribution can be easily calculated.

From these advantages, we have adopted the numerical model based on the spring-
mass model in this dissertation. As disadvanges of spring-mass models, in con-
trast, the models have a serious problem that the elastic force does not properly
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Figure 1.1: Schematic figure of triangular lattice model.

work for the restoration of deformation when configurations of two edge particles
between a spring changed by large external forces. To avoid this effect, breaking
rule of springs is sometimes introduced, which allows breaking of springs under
extremely large applied forces [68, 69, 70]. In this dissertation, we do not intro-
duce any breaking rule in our models. In chapter 2, we regard the state after such
the problem occurs as plastic deformation. However, in this dissertation, most of
simulations are carried out under the circumstances that deformation of models
accurately restores.

Here, we introduce our numerical model based on the spring-mass model. We
use some lattice geometries to represent elastic materials. In the next chapter,
we use triangular lattice model to simulate the normal impact of a disk. In the
triangular lattice disk(see Fig.1.1). All the mass points are connected with linear
springs with spring constant . In the limit of a large number of mass points,
this disk corresponds to the continuum circular disk with Young’s modulus £ =
2r/+/3 and Poisson’s ratio 1/3[71, 72]. As for the spring force, the position of



each mass point is governed by the following equation:

d’r; 0 r,—r;
=~k Y (do— r; —1;]) J (1.13)

m
dt? = |I‘i - I‘j|7

where d, is the lattice constant, r; is the position of the nearest neighbor mass
points of r;, m is the mass of the mass points. Note that the directional projection
of the linear spring force can cause the nonlinear deformation. By calculating
forces acting each particle from springs and external force, we can calculate the
positions of all particles in the next time step.

On the other hand, to simulate oblique impacts, we use random lattice to
express elastic material instead of using regular lattice such as triangular lattice
[39, 73, 74]. To make the random lattice disk, at first, we place mass particles in a
circle with its radius R at the position (x;, y;) = (r; cos 6;, ;sin 6;), where r; and
6; are uniform random numbers intherange of 0 < r, < Rand 0 < 6¢; < 27
respectively. After that, we connect all mass points with nonlinear springs using
the Delaunay triangulation algorithm[75]. Figure 1.2 is the random lattice disk
which is composed of 1099 mass points and 3153 springs. The spring interaction
between connected mass points is described as

1 2 1 4
Vij(z) = §kaxij + Zkbxij, (1.14)
where z;; is a stretch from the natural length of spring, and &, and £, are the spring
constants. £, is introduced to strengthen the model.

In this dissertation, we construct an elastic wall in addition to an elastic disk
to simulate impacts between a disk and a wall. To construct the random lattice
wall, similarly, we place mass points at the position (x;, y;), where x; and y; are
uniform random numbers. The interaction between the disk and the wall during
a collision is introduced as follows. Figure 1.3 is the schematic figure of the
interaction between the disk and the wall. The right figure is the magnified figure
in the circle on the left one. Total repulsion force of the disk is decided by a sum
of the forces which are applied to mass points on the lower half boundary of the
disk.

In our simulation, each mass point on the lower half boundary of the disk is
reflected by the force

F(ls) = agVy exp(—als)n?, (1.15)
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Figure 1.2: The random lattice disk with rough surface
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Figure 1.3: Interaction between surface particles of the disk and the wall.

where ay = 300/R, Vo = amc®*R/2, I, is the distance between each surface
mass point of the disk and its nearest surface spring of the wall, and n® is the
normal unit vector to the spring. We adopted an exponential function as a strong
repulsion force to inhibit penetrations of mass points of the disk to springs of the
wall surface. The exponential function may be replaced by a strong repulsion
among atoms like ~ ;12 coming from Lennard-Jones potential. However we
have adopted a single exponential function following the idea in Ref.[37] 2. Two
mass points 1 and 2 of both ends of the spring are respectively applied by the
reaction force, F(l,) = —-2%)_ns and Fy(l,) = —-2%)_ns, which are decided

T T 1+/h .
by the balance of the torques. Thus, the equation of motion for each mass point

2The properties of force laws among two granular particles used in simulations were system-
atically investigated by Schéfer et al. [76].
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on the lower half boundary of the disk is represented by

d2rz-
m
dt?

N;
= Z {_kaxij - ka?j} + 9(15 - lth)CLoVo eXP(_aols)a (1.16)
j=1

where m is mass, r; is the position of i-th mass point, x;; is a stretch between i-th
particle and j-th particle from the natural length, NV; is the number of mass points
connected to i-th mass point, and 6(l; — l;;,) is a step function which is defined by

1 il <y
6l = ln) = { 0 ifly > Ly,

where [y, is a threshold which is the average of natural lengths of all springs of
the disk. For other mass points, the last term of the right hand side of Eq.(1.16) is
omitted. The sum of Eq.(1.16) for all :-th mass points corresponds to the repulsion
force applied to the disk.

In the simulation of oblique impacts with the random lattice model, roughness
of the surfaces is important to make the disk rotate after collisions. To make
roughness, at first, we generate normal random numbers whose average value is 0
and then make the initial position of particles on surfaces of both the disk and the
wall deviate with them. In most of our simulation in this dissertation, we choose
the standard deviation of the normal random numbers 6 as 6 = 3 x 1072, where
R is the radius of the disk.

In the random lattice model, we measure elastic constants such as Young’s
modulus E and Poisson’s ratio v by stretching mechanically a band of random
lattice and measuring strains in vertical and horizontal directions. Details about
measuring them are treated in chapter 4.

1.4 Thecomposition of the dissertation

Here, we present brief outlines of each chapter of the dissertation. In chapter 2,
the normal impact of an elastic disk to a potential wall will be demonstrated by
simulation as in experiment. We reproduce that COR decreases with increasing
impact velocity. In chapter 3, the normal impact of an elastic disk to an elastic
wall will be demonstrated by simulation. We will show that COR depends on the
thickness of the wall which is similar to the experimental results by Sondergaard
et al.. In chapter 4, the oblique impact between an elastic disk and an elastic
wall will be demonstrated by simulation. Our numerical results of the relation

12



between coefficient of tangential restitution and incident angle can be well re-
produced by Maw’s theory of oblique impacts[27, 28]. In chapter 5, the oblique
impact between a hard elastic disk and a soft elastic wall, which corresponds to
the experiment by Louge and Adams[30], will be demonstrated by simulation and
analyzed theoretically. Chapters 6 and 7 are devoted to the general discussion and
conclusion of the dissertation.

Appendices A and B are devoted to derivations of Walton’s simple argument
and Maw’s theory of oblique impacts, respectively. In Appendix C, we explain
the calculation of Young’s modulus and Poisson’s ratio of a square lattice system.
In Appendix D, the contact problem of a hard disk on an elasic half-space is the-
oretically treated. Appendix E is a simple chronological table of impact studies.
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Chapter 2

Normal impact of an elastic disk on
a wall without internal structure

In this chapter, we demonstrate impacts of two-dimensional elastic disks with a
potential wall numerically. We introduce two simulation methods: one is based on
a lattice model (model A) and another is based on a continuum model (model B)
which is identical to that by Gerl and Zippelius[37]. Both models do not include
any dissipation. Thus, we assume that inelastic collisions take place only from the
transfer of modes of oscillation. Through our simulation, we will demonstrate that
the elastic models do not recover the results predicted by the quasi-static theories
in the low impact velocity [26, 33, 34, 35, 36].

2.1 Modéds

Let us explain details of our models to simulate collisions between two identical
disks with radius R by the method of the mirror image. Here, we carry out impact
simulation with two kinds of numerical models: model A and model B. In both
models, the wall exists at y = 0, and the center of mass of the disk keeps the
position at x = 0. The disk approaches from the region y > 0 before rebounding
from the wall (see Fig.2.1).

15



potential wall

0

Figure 2.1: The disk of model A or B approaching to the potential wall.

2.1.1 Model A

Model A consists of 1459 mass points (with the mass m) on a triangular lattice.
The position of each mass point of model A is governed by the following equation:

dzrz-

6
e —m;wo =i = ;)

r,—ry

| + nag Ve Y, (2.1)
r,—r

il
where d, is the lattice constant, r; is the position of the nearest neighbor mass
points of r;, m is the mass of the mass points, y; is the y coordinate of r;, and n
is the unit vector in the y direction. The wall potential is given by Vye~%¥, where
Vo = mc?agdy/2 with ¢ = /E/p and the density p. We adopt ay = 100/d, for
the most of simulations, but we also adopt the result of ay = 25/dy = 500/ R to
obtain Fig. 2.2, though the result is almost identical to that for « = 100/d,. The
exponential interaction between the disk and the wall is introduced to simulate
a collision between two identical disks. Actually, in the limit of ¢y — oc, the
exponential potential can be regarded as a potential of the mirror image. Thus,
for later calculation, we analyze the case for large aqdy. The convergence of the
result on the number of mass points are roughly checked in this model.
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2.1.2 Model B

In this subsection, we introduce model B which is originally proposed by Gerl and
Zippelius[37]. Although the details of this model can be found in their paper, we
present a short description of this model to understand the setup of our simulation.

Gerl and Zippelius[37] analyze Hamilton’s equation to simulate collisions of
a disk with the radius R as;

OH . OH

B, =— C Q= 2.2
,l 8Qn’l J Q ,l aPn’l ( )
under the Hamiltonian
Pz N Pl 1 /2
H = —mi Mw 2 v dbe—10v(®:t) 213
i+ 2lit + M) + g @3

Here M is the (two-dimensional) mass of an elastic disk, and @),, ; is the expansion
coefficient of the 2D elastic deformation field in the polar coordinate u = (u,, ug),

(Ur(r Z Qn l nl COS ’I‘Ld) u¢ ( ) sin ngzﬁ), (24)
Jn kl Jn k;L T
where u"!(r)R = An,lidj"ilk"’lr) +an,17( ") and ul}'(r)R = —nA,, ulknr)
r T
B’”W with the radius of the disk and the Bessel function of the n—th

.,
order J,(z). Here k}, ; = kyn,1/2(1 +v)/(1 — v?), and ky,; is the solution of

/

(1 =) (1 = 026k 2Ty 1 (K) Jnor (8) + £2[62 = 2n(n 4+ 1) (1 — v)] o (k) Jn(x )
(1= v)[8* = (1= )(L = 0*)n)[KTu1 (K) Ju(K) + & o1 (8) Ju(5)] = 0(2.5)

with Poisson’s ratio v, k = k, R and x = k! 2, which is given by the force
free boundary condition of the disk. Thus, for flxed n there are infinitely many
solutions k,; and w,; = kn,l\/E/{p(l — v2)} numbered by I = 0,1,---, 0
A, and B,,, are determined by

N e LA L)
LT (ki) ()
1B, (1) [ ’ ) _ (2.6)

dR  R2
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and fOR drr{um® + ug’lz} = R?. P,, is the canonical momentum. y(¢, t) is the
shape of the elastic disk in polar coordinates;

y(o,t) = yo(t) + Z Qn,1(Cyy cos(ng) cos ¢ — Sy, sin(ng) sin ¢) (2.7)

n,l

with the position of the center of mass y,(¢) and constants C,,; and S,, ; determined
by the maximal radial and tangential displacement at the edge of the disk as C,, ; =
u™(R) and S,,; = ug’l(R). M is the mass of the disk, and the momentum of the

center of the mass P, = Muj, satisfies P, = —(0H/0yq) , Vo and a are parameters
to express the strength of the wall potential.

For the simulation of a pair of identical disks, they have confirmed that the
result with finite a, can be extrapolated to the result of ay — oo by taking into
account finite a, effect in proportion to 1/(aoR). Similarly, the result with finite
number of modes /V should be extrapolated with the correction in proportion to
1/+/N. Since they have already checked such the tendencies, we only adopt N =
1189 (n < 50) or N = 437 (n < 30), V; = Mc?aR/2, and ay = 500/R.

2.1.3 Parameters in both models

For the comparison between two different models, we only simulate the case of
Poisson’s ratio » = 1/3. The numerical integration scheme for model A is the
classical fourth order Runge-Kutta method with At = 1.6 x 1073,/m/k. Parts
of the calculation in model A has been checked by the fourth order symplectic
integral method with At = 5.0 x 107*y/m/k, and no differences in results of
two methods can be found. For model B, we adopt the fourth order symplectic
integral method with At = 5.0 x 107*R/c. In both models, we have checked for
conservation of the total energy.

We also investigate the impact with finite temperature. The temperature is
introduced as follows: In model A, we prepare the Maxwellian for the initial
velocity distribution of mass points, where the positions of all mass points are
located at their equilibrium positions. From the variance of the Maxwellian we
can introduce the temperature as a parameter. To perform the simulation, we pre-
pare 10 independent samples obeying Maxwellian with the aid of normal random
number. In model B, we prepare samples which satisfy Gibbs states. Namely,
VMw, 1Qn/v/2 and P,,;/v/2M obey the normal random number with the vari-
ance (temperature) 7. In model B, we prepare many samples (120 or 20) to sim-
ulate systems at finite 7.
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The summary of differences between model A and B is as follows: (i) All of
the mass points in model A interact with the wall. However, in model B, only
the exterior boundary has the influence of the potential as in Eq.(2.3). We have
replaced the original model A by a model in which only mass points on the bound-
ary can interact with the wall. However we cannot find significant differences in
the results of our simulation in both discrete models. (ii) Model A can have non-
linear deformations, but model B is based on the theory of linear elasticity. (iii)
Model A can express some plastic deformations while model B cannot. This ef-
fect will be discussed later. (iv) Model A has six fold symmetry while model B
has only rotational symmetry. (v) The force free boundary condition is assumed
in model B though it may not be appropriate for actual situations. Model A does
not include such the condition.

2.2 Results

Now, let us explain the details of our simulation. We will introduce the results at
T = 0 and at finite 7" by turns.

2.2.1 Simulationat7T =0

At first, we carry out the simulation of model A and model B with the initial
condition at 7" = 0 (i.e. no internal motion). Figure 2.2 is the plot of the COR
against the impact velocity for both model A and model B. For model A, we have
adopted the fourth order Runge-Kutta method. To eliminate the effect of six fold
symmetry of model A, we average 12 data as a function 6 of the initial orientations
of the disk i.e. # = 7n/72 withn = 1,2,3,---,12 with ag = 25/d, = 500/ R.
We also investigate the case that only mass points at the boundary can interact with
the wall for small »; but their results do not have any visible difference from the
original model A. It is obvious that there is no plastic deformations for v; < 0.2¢.

For model B, we show the results of 437 modes and 1189 modes which clearly
demonstrates the convergence of the result for the number of modes. When impact
velocity v; is larger than 0.1¢ with ¢ = /E/p, the value of COR of model A is
almost identical to that of model B. Each line decreases smoothly with increasing
impact velocity.

At present, we do not know the reason why the significant difference between
the two models exists at low impact velocity. It is difficult to imagine that occur-
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rence of nonlinear deformations during the impact of model A causes the differ-
ence because the deformation is smaller when v; is smaller.

1 . . .
modelA —x-
% X X 437 modes + |
0.98 * % 1189 modes * |
¥
. Frroe gy §;
0.96} * %
: ES
% ¥
0.94] e o
Ly
E 3
0.92 0.05 01 015 0.2
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Figure 2.2: Coefficient of restitution for normal collision of the Model A and
Model B as a function of impact velocity, where ¢ = /E/p with the Young’s
modulus E and the density p. 437 and 1189 modes are chosen for model B.

Second, we investigate the force acting on the center of mass of the disk caused
by the interaction with the wall in model B. In the limit of v; — 0 we expect that
the Hertzian contact theory can be used[49, 25, 37]. The small amount of energy
transfer from the translational motion to the internal motion is the macroscopic
dissipation. Thus, we can check whether the quasi-static approaches [26, 33, 34]
or our elastic simulation can be used in slow impact situations.

If h is given, we can calculate the elastic force by solving Eq.(1.7) numerically.
Figure 3 is the comparison with our simulation in model B (1189 modes) and the
Hertzian contact theory Eq.(1.7) which is given by the solid lines. The result of
our simulation at the impact velocity v; = 0.01¢ shows the hysteresis as suggested
in the simulation at v; = 0.1¢[37]. This means the compression and rebound are
not symmetric. The hysteresis curve is still self-similar even at v; = 0.04c¢ but the
loop becomes noisy at v; = 0.1c.

For very low impact velocity v; = 0.001¢, the hysteresis loop almost disap-
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Figure 2.3: The comparison of the Hertzian force in Eq.(1.7) with our simulation
at v; = 0.01c (a) and v; = 0.001¢(b) at 7" = 0 in model B. F},; is the total force
originated from the interaction with a wall.



pears and the total force observed in our simulation is almost a linear function of i
which deviates from the one predicted by both the Hertzian contact theory and the
quasi-static theory (Eq.(1.10)). In particular, the turning point which corresponds
to the point of the largest F},, in Fig. 2.3(b) is apart from the Hertzian curve (the
solid line). This deviation is in clear contrast to the quasi-static theory, because
the dissipative force in the theory in Eq.(1.10) must be zero at the turning point
which dh/dt = 0 should satisfy. This tendency is invariant even for the simula-
tion of model A, though the data become noisy. The linearity of the total repulsion
force is not surprising, because e—¥(®% in the potential term in Eq.(2.3) can be
expanded in a series of (), ; for very slow impact.

0.41

04 |

Position of C.M.

0.39 |

80 120 160
Dimensionless Time

Figure 2.4: The time evolution of the center of mass of the elastic disk under the
compression by g = 0.01¢?/R (model B with N=437). Here the dimensionless
time is measured by R/c and the position of C.M. (center of mass) is measured
by the diameter of the disk (2R). Simulation is performed at the finite temperature
T = 1078Mc? and is averaged over 20 independent samples which start from
initial condition satisfying the Gibbs distribution.

The result may suggest that our elastic models do not recover the Hertzian
contact theory in the quasi-static limit. To check the tendency, we investigate
whether any static state can be achieved in our models in the compression. Figure
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2.4 is the time evolution of the center of mass in the simulation of model B, where
the strength of dimensionless external field is ¢ = 0.01¢?/R. We observe that
an undamped harmonic oscillation of the center of mass in the simulation after
the first deformation. This oscillation is stable because the energy of oscillation
is not enough to overcome finite energy gap between energy levels. Thus, the
center of mass keeps the oscillation as the motion in the ground state. We note
that Fig.2.4 is the result of the simulation at finite temperature in which the mode
transfer is enhanced. Nevertheless, the center of mass keeps the harmonic oscil-
lation. This tendency can be observed in model A, too. Even when we introduce
the randomness in the coupling in model A, the oscillation is undamped. Thus,
both of elastic models cannot reach any equilibrium steady state as is assumed in
the Hertzian contact theory. This result indicates that the elastic models are not
appropriate to describe quasi-static situations for v;/c < 1. Note that the intro-
duction of nonlinear deformation may not be enough, because as we can see in
Fig. 2.3 (b) the deformation is very small for slow impact. Thus, it is difficult
to imagine the impact produces nonlinear deformations. To reach an equilibrium
state, thus, we need to introduce some microscopic dissipative mechanism.

However, the validity of the contact time ¢, in the impact evaluated as ¢; ~
(rR/c)+/In(4¢/v;) by the quasi-static theory[37] has been confirmed by the re-
sults of our simulation of model A (Fig. 2.5). Thus, our elastic model can be valid
in the impact with the intermediate speed.

2.2.2 Simulation at finite T’

Now, let us show the results of our simulation at finite 7". The thermal velocity
vy, = /T /M causes significant differences from those at 7 = 0 in both low and
large impact velocities. In this sense, we have much room to study this process at
finite 7" systematically.

For small impact velocity, i.e. if the effect of v, is not negligible, the fluctu-
ation of COR at finite 7" becomes large, while the average is almost independent
of temperature as in Figs. 2.6 and 2.7, where the results are obtained from the av-
erage of 120 independent samples. In some trials at high temperature, thus, COR
becomes larger than 1, though the average is less than 1. Of course, for such the
high temperature, it is impossible to control the actual speed of impact.

For large impact velocity, v; > vy, we do not observe any definite tempera-
ture effect in model B but we find drastic decrease of COR in model A. It seems
that COR can be on a universal curve when the impact velocity is scaled by the
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Figure 2.5: The plot of contact time versus the impact velocity. R represents the
radius of the disk, in which R = 40,60,70 and 80 correspond to the number of

mass points 5815, 13057, 17761 and 23233, respectively. The dotted line is fitting
curve based on the quasi-static theory.
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Figure 2.6: The average shift of COR at finite temperature 7" = 10 %M ¢? as a
function of the impact velocity in model B with N = 437.

critical velocity above which the COR decreases abruptly (Fig. 2.8). The rela-
tion between the critical velocity and the initial temperature at the intermediate
impact velocities is shown in Fig. 2.9. The critical velocity seems to obey a lin-
ear function of 7', though the data is not on the function for both slow and fast
impacts.

2.3 Discussion

We investigate what happens in the disk above the critical velocity and find the
existence of plastic deformation of the disk (Fig. 2.10(a)). Actually, there are no
energy differences between two configurations in Fig. 2.10(b) which can occur
after the strong compression during the impact but cannot be released after the
impact is over. It is well known that plastic deformation causes the drop of the
CORJ25].
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Figure 2.7: The standard deviation of COR /(e— < e >)?atT =10 ®*Mc? asa
function of the impact velocity v; via model B with NV = 437.

2.3.1 Application of the conventional theory of plastic defor-
mation to 2D impacts

Following the description by Johnson[25], let us explain the dimensional analysis
of the two-dimensional plastic deformation. From two-dimensional Hertzian law
Eq.(1.7) we evaluate h ~ a?/R[25]. The work for the compression of the disk 17/
isW = (1/2)Mv? ~ foh* dhF, ~ fo“* daa®/R?, where M and v; are the mass
of the disk and the impact velocity, respectively. h* and a* are respectively the
maximal compression and and the maximal contact length. Here we neglect the
logarithmic correction and unimportant numerical factors. Introducing the mean
contact pressure during dynamical loading p, which satisfies p; ~ F,;/a, W can
be evaluated by W ~ F,h* ~ py(a*)®/R. From W ~ Muv? we can express
a* ~ (Mv?R/py)'/3.

Let us assume that the impact exceeds the yield pressure for the plastic defor-
mation. In such the case, the deformation does not restore correctly after rebound.
Thus, the work in a rebound is W' ~ F*h* where F* is the maximal force during
the impact. From h* ~ F*/E and F* ~ pya* we evaluate W' ~ (pga*)?/E.
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Figure 2.8: The relation the coefficient of restitution and the impact velocity
rescaled by the critical velocity for each temperature. Curves are plotted in the
log-log scale. The temperature is scaled by T, = mc? with the mass of the mass
points m. Note that the error bars are plotted only in the case 7'/T, = 0.03 but is
the same order even at other 7" (model A).
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Figure 2.9: The plot of the initial temperature and the critical velocity causing the

plastic deformation. v../c = a(T/T5) + b is the fitting curve line from the data
between T'/T, = 0.02 and 0.05 (model A).
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Figure 2.10: (a) Plastic deformation of model A with v; = 0.22c at T' = 0.03m.c>.
The solid line represents the initial circle. The points in a circle are positions of
the mass points after the collision. The deformation is asymmetric because of
the velocity distribution at the initial stage. (b) All the mass points of the disk
initially consist of triangular lattice. When the deformation occurs, it is possible
that the configurations of mass points (points in figure) locally change like this
figure. Note that these two configurations are energetically equivalent.
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Substituting the expression of a* into the expression for W and W' we obtain the
COR as

2 ”r/
2 _ Yr __
= — = — ~

2

S

p2/3R2/3

RTI (2.8)

S

Thus, we expect the law e ~ v[l/B in the collision of a plastic deformed disk. The

three dimensional version of evaluation which gives e ~ 02;1/4 agrees well with
the experiment[25].

2.3.2 Realistic systems

The actual plastic deformation is more complicated than what we modeled in this
paper. For example, in the actual contact area a central region of perfect contact
is surrounded by an annulus of imperfect contact. In actual situations, it is not
easy to obtain a pure normal collision, because the rotation of disks is difficult
to be suppressed and the wall is not perfectly flat. Thus, a little deviation of
the collision angle causes the tangential stress in collisions. In the existence of
tangential stress, we need to consider the effect of imperfect contact or partial slip
in the outer region to get finite force at the corner of contact area.

We also note that the actual materials are not uniform. They contain a lot of
microcracks, and amorphous structure locally. Such the imperfection of the ma-
terials causes the local achievement of the yield of plastic deformation. Thus, the
plastic deformation also occurs locally in contrast to the macroscopic deformation
in Fig.2.10.

Our finding is, however, something new, because (i) the decrease of COR is
excited by the temperature and (ii) COR decreases more rapidly like e ~ v; 12
than that for the conventional plastic deformation e ~ vi_l/?’ in Eq. (2.8). The
mechanism how to occur the plastic deformation is not clear at present including
the linear law in Fig. 2.9.

For future refinement of our model to describe plastic deformation, we need to
introduce (i) the initial cracks, (ii) local deformation of lattices at the initial condi-
tion, (iii) the yield of local plastic deformation or non-Hookian effects of springs,
and (iv) porosity distribution at the initial condition. Of course, to compare the
simulation with experiments, we have to simulate the model in three dimensional
situations.
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2.4 Conclusion of thischapter

We have numerically studied the impact of a two-dimensional elastic disk with
a potential wall with the aid of model A and model B. The result can be sum-
marized as (i) The coefficient of restitution (COR) decreases with the impact ve-
locity. (ii) The result of our simulation is not consistent with the result of the
two-dimensional quasi-static theory. For large impact velocity, there is hysteresis
in the deformation of the center of mass. For small velocity, there remains the
inelastic force even at dh/dt = 0. (iii) The effect of heat diffusion may be impor-
tant for the small impact velocity. (iv) There are drastic effects of temperature in
both small and large impact velocity. (v) In particular, for large impact velocity of
model A, we have found the abrupt drop of COR above the critical impact velocity
by the plastic deformation. The critical velocity of the plastic deformation seems
to obey a simple linear function of temperature.
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Chapter 3

The coefficient of restitution as a
function of wall thickness

In this chapter, the impact of an elastic disk with an elastic wall is numerically
studied. We introduce a numerical model of an elastic disk and an elastic wall by
mass points and linear springs. From our simulation, we confirm that the coeffi-
cient of normal restitution depends on the thickness of the elastic wall.

3.1 Introduction

In the previous chapter, we introduced two different numerical models to investi-
gate impact of an elastic disk with a structureless wall[38, 39]. One of them is the
lattice model consisted of mass particles and linear springs. Another is the contin-
uum model which is identical to that by Gerl and Zippelius[37]. With these two
models, we investigated the relation between the impact velocity and the coeffi-
cient of normal restitution, etc[38, 39]. These two models have common features
in that (i) they have no dissipative mechanism and (ii) the wall has no internal
degrees of freedom. In actual situations of collision between a disk and a wall,
however, a part of initial energy of the disk is transfered into the wall. Thus, we
have to introduce internal degrees of freedom of the wall to simulate impacts be-
tween the disk and the wall. As for the normal impact between a metal sphere and
a wall, Sondergaard et al. demonstrated that the coefficient of restitution depends
on the thickness of the wall[15]. Their experimental results are well reproduced
by the theory of plate response under point force by Zener[77].

In this chapter, we perform simulations of the normal impact of an elastic disk
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disk and an elastic wall.
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Impact model consisted from an elasti

Figure 3.1

Imensiona

with an elastic wall. In the next section, we will introduce our two-d

model consisted of an elastic disk and an elastic wall. In section 3.3, we will show

the result of our simulation. The final section is devoted to the conclusion remarks

of this chapter.

3.2 Modd

Let us introduce our numerical model. We adopt the triangular lattice model of
1459 mass points as an elastic disk(see Fig.3.1). We also introduce the elastic

wall of 6400 mass points on a square lattice. We introduce two spring constants

for spring interactions of the wall
next-nearest neighbor interaction

k1 for nearest neighbor interaction and k5 for
for the wall. Controlling £, and k5, we can

change the material constant of the elastic wall[69, 70] (see appendix C). We set
k, and ko as Young’s modulus of the elastic wall is equal to that of the elastic
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disk when the force is applied to the wall in the normal direction. The width of
the wall is 4 times as long as the diameter of the disk. Two sides of the wall are
fixed. We can choose any thickness of the wall. As for the interaction between the
disk and the wall during a collision, we adopt aq = 100/d, for the repulsive force
of the disk. To perform the numerical simulation, we scale all parameters by the
radius of the disk R and the speed of sound ¢ = /FE/p, where p is the density
of the disk. We adopted the fourth order symplectic numerical method with the
time step At = 1072R/c (R is the radius of the disk) as the numerical scheme of
integration.

3.3 Simulation result

Sondergaard et al. investigated the influence of the ratio of the diameter of sphere
to the plate thickness on the coefficient of restitution resulting in normal impacts[15].
They dropped ball bearings(steel or bronze) and glass spheres without any signif-
icant rotational velocity from various heights onto plates of lucite or aluminum of
which two sides were solidly clamped to a relatively rigid support structure. From
their experiment, the coefficient of restitution decreases as the ratio of the particle
diameter to the plate thickness increase.

We set our situation corresponding to the experiment by Sondergaard et. al.[15]
to carry out our simulation of the normal impact. Our situation is as follows. We
control the ratio of the disk diameter D, to the wall thickness T,, D,/T,, from
0.4 to 1.0. We make the disk collide against the wall with various initial velocity
ranging from 0.02¢ to 0.18¢ and calculate the coefficient of restitution (Fig. 3.2).
When the impact velocity has same value, the coefficient of restitution of small
Dy/T, is larger than that of large D,/T,,. The curve labeled model A is the result
of the case that the lattice model of the disk and the wall with no internal degrees
of freedom[39].

3.4 Conclusion remarks

We have performed the normal impact of the elastic disk with the wall. In the
case of the normal impact, the coefficient of restitution e depends on the ratio of
the diameter of the disk to the thickness of the wall D,/T,,. If D;/T, is large,
e is small. It is seen that the macroscopic vibration of the wall is so large that
initial energy of the disk decreases. Sondergaard et al. introduced the impact
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Figure 3.2: The relation between the normal impact velocity of the disk and the
coefficient of restitution. Each curve has different value of D,;/T,. The curve
labeled modelA is the result in the situation when the wall has no internal degrees
of freedom.

parameter made by rescaling D,/ T, and showed that the coefficient of restitution
is a function only of the impact parameter[15]. In our case, however, we could
not rescale our data in order to get an universal relation between D,/T,, and e. To
clarify the reason will be one of future subject to be solved.
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Chapter 4

Obligue impact of a random lattice
model

In this chapter, the oblique collision between an elastic disk and an elastic wall is
numerically studied. The aim of this chapter is to investigate the relation between
the coefficient of tangential restitution 3 and the incident angle in detail from our
numerical simulation using the random lattice model. Figure 4.1 is the schematic
figure of an oblique impact of a disk on a wall (a) before and (b) after collision. We
define v as the incident angle in chapter 4 and 5. Here, the coefficients of normal
and tangential restitution, e and 3, are defined ase = —wv,, /v, and § = —fut(c)'/v,fc),
respectively. Our numerical model reproduces experimental results regarding the
dependency of the coefficient of tangential restitution on the incident angle of
impact and can be explained by the phenomenological theory of oblique impacts.

The organization of this chapter is as follows. In section 4.1, we introduce
our numerical model and setup of the simulation. In section 4.2, we introduce
Walton’s simple argument of oblique collisions. Section 4.3 is the main part of
this chapter where we summarize the results of our simulation and compare them
with the theoretical outcome. Section 4.4 is devoted to discussion and conclusion
of this chapter.

41 Mode

Let us introduce our numerical model. Our numerical model consists of an elastic
disk and an elastic wall which are based on the random lattice model in chapter 1
(Fig. 4.2). Numbers of mass particles are 1600 for both the disk and the wall. The
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(a)

Figure 4.1: The schematic figure of a collision of a disk with a wall.

width and the height of the wall are 8 R and 2R, where R is the radius of the disk.
We adopt the fixed boundary condition for both side ends of the wall. As for spring
interactions in the model, in most of simulations, we adopt &, = 1.0 xm¢?/R? and
ky = 1.0 x 10~ 3mc?/ R* for the disk, respectively, in Eq.(1.14). For the wall, we
adopt k, = 1.0 x 10mc?/R?* and ky = 1.0 x 10 3mc?/ R*, respectively. As for the
interaction between the disk and the wall during a collision, we adopt ay = 300/R
for the repulsive force of the disk in Eqg.(1.15). All of the data presented in this
chapter are obtained from the average of 100 samples in random numbers to make
the roughness of the disk.
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Figure 4.2: The elastic disk and wall consisted of random lattice system.
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Figure 4.3: The bands of random lattice (a) before and (b) after stretch.

For the random lattice model, it is impossible to determine Poisson’s ratio v
and Young’s modulus E theoretically. To determine Poisson’s ratio v and Young’s
modulus E of this model, we add the viscous term in Eq.(1.14) which is propor-
tional to the relative velocity of two connected mass points. By stretching the band
of random lattice and calculating the ratio of the strains in vertical and horizontal
directions to the force and the ratio of the vertical strain to the force when the
vibration stops, we can obtain Poisson’s ratio and Young’s modulus. Figure 4.3(a)
and 4.3(b) are snap shots of the bands of random lattice made of 348 mass points
before and after adding the force F' = 3.0 x 10?mc?/R, respectively. We change
the force from 2.0 x 10?mc?/R to 3.0 x 10?°mc?/R and average 10 samples of
results to obtain v = (7.50+0.11) x 102 and E = (9.5440.231) x 103mc?/ R?,
respectively.

For comparison, we introduce other two lattice models for elastic disks: tri-
angular lattice disk and square lattice disk(Fig.4.4). To investigate the effect of
the structure of the disk, the wall is same as the random lattice model. In order to
remove anisotropies of the surface, we put an exterior layer of random lattice. The
triangular lattice disk consists of triangular lattice in interior region and random
lattice in exterior region. Total number of mass points is same as that of random
disk. Poisson’s ratio and Young’s modulus of the triangular lattice can be calcu-
lated theoretically as 1/3 and 2k,/+/3 in the continuum limit, respectively[71].
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Figure 4.4: The schematic figures of (a) triangular lattice disk and (b) square
lattice disk.

The square lattice disk consists of square lattice in interior region and random lat-
tice in exterior region. We introduce two spring constants: k, = k; for nearest
neighbor interaction and k£, = k&, for next-nearest neighbor interaction. In the
continuum limit, Young’s modulus E and Poisson’s ratio v of the square lattice
are expressed as

1 kl + li?g kl - 2k2 2 92

- — 4.1

E - Tlnt2k) ik (4.1)
L k2 + (k% — 4k%)n?cnl2/ (42)

where n, and n, are the unit normal vectors horizontal and vertical to the colli-
sional plane.[69, 70] The derivation of Egs.(4.1) and (4.2) is presented in appendix
C. The square lattice disk is mainly used to investigate the effect of Poisson’s ratio
in section 4.4,

We scale the equation of motion for each particle using the radius of the disk
R as the scale of length and the velocity of elastic wave ¢ = /E/p as the scale
of velocity. As the numerical scheme of the integration, we use the fourth order
symplectic numerical method with the time step At ~ 1073 R/c.
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4.2 Walton’scollison model

To characterize oblique collisions, Walton introduced three parameters: the co-
efficient of normal restitution e, the coefficient of Coulomb’s friction 1, and the
maximum value of the coefficient of tangential restitution 3,[31, 32]. Experiments
have supported that his characterization adequately captures the essence of binary
collision of spheres or collision of a sphere on a flat plate[4, 5, 6, 7]. Walton
derives

g { —1+ po(l+e) cotfy(1+mTR2) (v > M) (4.3)
Bo (v <),

where v, is the critical angle, and m, R, and I are mass, radius and moment of
inertia of spheres, respectively[31, 32]. Details of the derivation are shown in
appendix A. In the next section, we will compare our results with this theory and
estimate the coefficient of friction of our model.

4.3 Results

In this section, we explain the results of our simulation. The angle of incidence
~ is ranged from 5.7° to 80.5° while the normal component of velocity is fixed as
0.1c. The colliding disk has no internal vibration and rotation at release time. In
order to eliminate the effect of the initial configuration of mass points, we prepare
100 samples of disk as the initial condition by using 100 sets of normal random
numbers and average data of all samples.

Figure 4.5 shows the relation between cot v and e. Although e is expected to
be a constant because the normal velocity of the disk is fixed, COR depends on ~.
In particular, for small cot +y, e decreases as cot v decreases. We will discuss this
behavior in the later discussion.

Figure 4.6 shows the relation between cot v and the coefficient of tangential
restitution 3. In this figure, the cross points are the results of the impact between
random lattice disk and wall, and broken lines are Eq.(4.3). In Eq.(4.3) we use the
value e = 0.8 which is the approximate mean value of e in the range 2.5 < coty <
6 in Fig.4.5. The result of simulation shows that 3, is 0.56 and i is 0.18 which
are close to the values observed in experiments of three dimensional impacts[4, 5].
Thus, we reproduce experimental tendencies of the oblique collision from the
simulation of the random lattice model[4, 5]. Stars are the results of random
lattice disk without roughness on the surface, in which 3 is close to —1. From this
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result, one can see that roughness on the surface is important for the rotation of the
disk after collision. The plus points in Fig.4.6 are the result of the triangular lattice
model where the orientation of initial disks is same as that in Fig.4.4(a). In this
model, ;5 takes negative values in all range of the angle of incidence. This means
that the disk made of triangular lattice is easy to slip on the surface. In addition,
the result strongly depends on the initial orientation of the disk. Thus, the model
of triangular lattice is inadequate to reproduce the tendency of experimental data.

Here, we compare our result with the theory of Maw et al.[27, 28, 29] which
can reproduce experimental data[5, 6, 7, 27, 28]. Details of the derivation of the
theory are shown in appendix B. According to their theory, all the region of the
angle of incidence can be divided into three regimes. For each regime, 3 can be
expressed as

(i) 1/un* < coty:

[ = —coswt; — ,u%e [1 + cos (% + g(l - eﬂ)} cot 7, (4.4)

(i) B./B.u(1 +e) < coty <1/’

B =—cosw(tz —t3) — ,u&[cos w(ts — tg) — cos Qg cosw(ts — ta)
B (4.5)
Q . :
+ —sin Qty sinw(tz — t9) + e + cos Q3] cot 7,
w

(iii) coty < B,/B.u(1 + e):

B=—1+ M% (1+e)cotr, (4.6)

where . is the coefficient of friction, 7 is the constant dependent on Poisson’s ratio
defined in Eq.(B.5), 5, and j3, are constants calculated from mass, radius, and radii
of gyration of material as 5, = 3.02 and 8, = 1. Q and w are respectively /2t
and (7 /2nt.)+/ b=/ 5., Where t. is the time when compression terminates. In the
regime (i), the disk initially sticks and starts to slip at ¢t = ¢; which is determined
by Eq.(B.10). In the regime (ii), the initial sliding motion of the disk continues
until £ = ¢, which is determined by Eq. (B.20). After the sticking period, the disk
starts to slide again at ¢ = ¢3 which is determined by Eqgs.(B.21). By calculating
[ at each value of coty and interpolating them with cubic spline interpolation
method, we can draw the theoretical curve.
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Figure 4.7: The relation between cot~ and 3. Cross points are the numerical
results of the random lattice model. Solid line is the theoretical curve.

We compare the result of simulation of the oblique impact using the random
lattice model with the theoretical curve(Fig.4.7). Herewe used n = 1.015,e¢ = 0.8
which is an average value of COR in Fig.4.5, and 1 = 0.18 which is decided by
comparing the slope in the small cot ~ region with Eq.(4.3). It is found that the re-
sult of random lattice model is consistent with the theory especially in small cot
region. In the intermediate region, the agreement of the data with the theory is
worse than that of other regions. This tendency can be seen in some experimental
results [5, 7, 28].

Theoretical result by Maw et al. suggests that Poisson’s ratio is not a crucial
parameter to determine (3, while Poisson’s ratio of the triangular lattice is much
larger than that of the random lattice. To confirm that anomalous behavior of the
triangular lattice comes from the specific lattice structure, we simulate the colli-
sion by using the square lattice model. By changing the value of spring constants
of square lattice disk and controlling Poisson’s ratio, we investigate the depen-
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dency of 3, on Poisson’s ratio. (3, are 0.49 and 0.51 when v = 0.1 and v = 0.3,
respectively. From these results, we confirm that Poisson’s ratio is not a crucial
parameter for 3.

4.4 Discussion and conclusion

Here, we discuss the results of our simulation. We change the number of mass
points of random lattice model and investigate the dependency on the system size.
As the number of mass points becomes larger, there is a tendency for a graph to be
flattened in the region of large cot ~. It can be seen as follows. When the model
is composed of many mass points, irregularity of the surface of the random lattice
diminishes as the size of the disk increases. As a result, 3, can take a stable value
in the large cot~y. When the number of mass points is larger than 1600, all the
mass points in the rectangle cannot be connected by the Delaunay triangulation
algorithm[75]. Hence, our results are restricted to the case with the 1600 mass
points as the maximum value.

We also investigate the influence of roughness of the surface. When the stan-
dard deviation ¢ takes 2.15 x 10~2R, 3 shows monotonic increase with increas-
ing coty. When § takes 3.0 x 1073 R, /3 approaches the stable maximum value
By = 0.56. For larger ¢, the surface of the rectangle is easy to collapse when
the collision occurs. As for the coefficient of friction s, 1 takes 0.14 when ¢
is 2.15 x 1072R while yq takes 0.18 when § is 3.0 x 10~2R. It can be seen that
roughness of the surface make the value of 1 increase.

The random lattice model can reproduce experimental tendency in 5, and g
with roughness on the surface. However, the random lattice model cannot re-
produce the tendency that 3 decreases from the maximum value 5, in the large
cot y[4]. Other mechanisms like sticking or plastic deformation on the surface
may be important in the large ~ region.

From Fig.4.6, the triangular lattice disk seems to be inadequate to reproduce
experimental tendency. The polygonal property of the structure in the triangular
lattice disk may cause the slip motion of the disk.

The decrease of e in the small cot v in Fig.4.5 can be understood as follows.
In our situation, normal component of initial velocity is fixed to 0.1c. Thus, the
initial kinetic energy of the disk becomes larger in the small cot . As a result, the
surface of the wall cannot seize the disk so that the initial kinetic energy is easy to
propagate in the horizontal direction to the surface of the wall.

In the last section we investigated the dependency on Poisson’s ratio with the
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aid of the square lattice model. In contrast, we change the value of k, of the tri-
angular lattice disk from 1.0 x mc?/R? to 1.0 x 10*mc?/R? to investigate the
dependency on Young’s modulus. Although Young’s modulus increases by 100-
fold, the triangular lattice disk remains slippery on the surface. From this fact, it
can be seen that Young’s modulus as well as Poisson’s ratio are not crucial. In ad-
dition, we change the value of k; of triangular lattice disk from 1.0 x 10=3mc?/R*
to 1.0 x 10~'mc?/ R* and investigate the effect of the nonlinear term of Eq.(1.14).
The change of £, also does not affect the results of triangular lattice disk. It can be
seen that the nonlinear term of Eq.(1.14) only strengthen the surface of the model
and does not make the triangular lattice disk rotate after collision. In the triangular
lattice disk, the polygonal property of the surface of triangular lattice may affect
the results.

Finally, we refer to the connection between 1 in Eq.(4.3) and 4 in Eq.(4.6).
In Fig.4.7, the value of p is same as o estimated from the slope in the range
0 < coty < 2in Fig.4.6. Comparing Eq.(4.3) with Eq.(4.6), we can derive the

relation between i and p as
2 R?
Be <1+m ) 4.7)

"s, = i

In the two dimensional binary collision of disks, 1 + mR?/I can be calculated as
3 explicitly. Meanwhile, 3./, in our system can be calculated as 3.02. Thus, p
and p are in our case almost identical.

In this chapter, we have demonstrated the two-dimensional simulation of the
oblique impact. Our random lattice model produces the same tendency as ex-
perimental data qualitatively while triangular lattice model can not produce the
positive value of 3,. For normal COR, e depends on the initial angle of incidence
and decreases in the large v when the normal component of initial velocity is
fixed. For 3, we compare our results with Maw’s theory of the oblique impact.
Our result is consistent with their theory especially in the large and small region
of cot .
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Chapter 5

Oblique impact of an elastic disk on
a soft wall

In this chapter, we demonstrate that COR increases with tan ~ to exceed 1 at the
critical incident angle through in our two-dimensional simulation of the oblique
impact between an elastic disk and an elastic wall[74]. As related in chapter 1, itis
recently reported that COR can exceed unity in oblique impacts[42, 43, 30] while
COR has been believed to be less than 1 in most situations. In the next section,
we construct an impact model by extending the model in the previous chapter.
In section 5.2 and 5.3, we will show the relation between e and the tangent of
incident angle and the relation between p and the tangent of incident angle and
explain our results with the aid of the theory of elasticity[51, 78]. The final section
is devoted to the discussion and conclusion of this chapter.

51 Mode€

Let us introduce our numerical model[79]. Our numerical model consists of an
elastic disk and an elastic wall (Fig. 5.1). The width and the height of the wall
are 8RR and 2R, respectively, where R is the radius of the disk. We adopt the fixed
boundary condition for the both side ends and the bottom of the wall. To make
each of them, at first, we place mass points at random in a circle and a rectangle
with the same density, respectively. We place 800 mass points at random in a
circle with the radius R for the disk while we place 4000 mass points at random
in a rectangle for the wall.

We connect all the mass points with nonlinear springs for each of them using
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Figure 5.1: The elastic disk and the elastic wall consisted of random lattice.

the Delaunay triangulation algorithm[75]. The spring interaction between con-
nected mass points is given by

. ) 1. 4 .
VO (z) = k(’)x2+1k,§”x4, i = d(disk), w(wall), (5.1)

1
2
where z is a stretch from the natural length of the spring, and kD and kéi) are the
spring constants for the disk(i=d) and the wall(z=w). In most of our simulations,
we adopt £\ = 1.0xmc?/R2, k&) = k5% /100, and £\ = k{ x 103/ R2, where
m and c are the mass of each mass point and the one-dimensional velocity of
sound, respectively. We do not introduce any dissipation mechanism in this model.
The interaction between the disk and the wall during a collision is introduced as
follows. The lower surface mass points of the disk are reflected by the force,
F(l,) = aVjexp(—als)n®, where a is 300/ R, V; is amc*R/2, I, is the distance
between each surface mass point of the disk and the nearest surface spring of the
wall, and n?® is the normal unit vector to the spring [79]. We should note that
the strong repulsion force F(I,) is introduced to inhibit the penetration of mass
points of the disk to the surface springs of the wall[37]. We have confirmed that
the model reproduces two-dimensional Hertzian contact theory by adding gravity
and dissipation.
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In this model, the roughness of surfaces is important to make the disk rotate
after a collision[79]. To make roughness, we displace the surface mass points of
both the disk and the wall by generating normal random numbers with its average
and standard deviation, 0 and 3 x 1072R, respectively. All the data in this letter
are obtained from the average of 100 samples in random numbers.

Poisson’s ratio v and Young’s modulus E of this model can be evaluated from
the strains of the band of random lattice in vertical and horizontal directions to
the applied force. We obtain Poisson’s ratio » and Young’s modulus F as v =
(7.50 £ 0.11) x 1072 and F = (9.54 £ 0.231) x 103mc?/ R?, respectively.

We fix the initial colliding speed of the disk |v(0)| as 0.1c¢ and set the tangential
and the normal components as v,(0) = |v(0)|siny and v,(0) = |v(0)|cos~,
respectively. After a collision, we calculate COR for each . We use the fourth
order symplectic numerical method for the numerical scheme of integration with
the time step At = 10°R/c.
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Figure 5.2: Numerical and theoretical results of the relation between ¥; and COR.
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52 evs ¥,

Figure 5.2 is the relation between COR and ¥y = —(v(0) - t)/(v(0) - n) = tan~y
obtained from our simulation. The cross point is the mean value and the error bar
is the standard deviation of 100 samples for each ~. This result shows that COR
increases with increasing W, to exceed unity, and has a peak around ¥; = 6.0.
The behavior of e having the peak is contrast to that in the experiment by Louge
and Adams[30].

Here, let us clarify the mechanism of our results. Louge and Adams[30] inter-
pret that e exceeds 1 in terms of the local deformation of the wall surface during
an impact. They suggest that their results can be explained by the rotation of nor-
mal unit vector of the wall surface by an angle a. Thus, we determine « at each ~
from the theory of elasticity.

y

X %

lc =|Xo - Xa

Figure 5.3: The schematic figure of a hard disk sliding on a soft wall. x coordi-
nates of both ends of the contact area AB are x = z, and = = .

Figure 5.3 is the schematic figure of a hard disk moving from left to right on
a wall, where the length of the contact area is [. = |z, — z,|. We introduce the
horizontal unit vector of the wall surface as t. Assuming that the contact area is
small in comparison with the radius of the disk R, we approximate the contact

52



area by the parabola

f@) = (z — 2)*/2R — y., (5.2)

where (., y.) corresponds to the contact point of the disk. In this situation, tan «
is defined by tan o = (f(x) — f(z4))/l.. To calculate tan «, we need to know
the ratio of |x. — z,| to l.. From the theory of elasticity[51, 78], this ratio can be
estimated as

T, — Tq 1 1—-2v

=1-40 ith  § = —arctan ——— 53
I Wi warcan,u(Q—Qz/)’ (5.3

where v is Poisson’s ratio of the wall and 1 is the coefficient of friction. Note that
Eq.(5.3) equals to 1/2 when i = 0. From Egs.(5.2) and (5.3), tan « is given by

20 — 1|z, — x4
2—-20 R

In Eq.(5.4), |x.—x,| can be evaluated by the simulation data. We adopt |z.—z,| =
0.55 R from the maximum value of the compression of the disk.

To evaluate o, we need to evaluate the coefficient of friction x through the
definition o = |J - t|/|J - n|, where J = m(v(t;) — v(0)) and ¢, is the duration.
The cross points in Fig.5.4 represent ;. calculated from our simulation data. Figure
5.4 shows 1 has a peak around W; = 3.0. Substituting this result to Eq.(5.4), we
obtain the relation between ¥, and tan a.

Next, let us calculate COR on a tilted surface. We introduce the normal and
tangential unit vectors on the contact area, n,, and t,, as n, = cos an —sin at and
t, = sin an+cos at, respectively. By introducing e, = —(v(t;)-n,)/(v(0)-n,),
we can express e in terms of e, as

(5.4)

tana =

eq +Udtan o
== < 5.5
‘ 1—¥¢tana’ (5:5)

where ¢ = —(v(0) - t4)/(v(0) - n,) and ¥§ = —(v(ty) - to)/(v(0) - n,). U
can be rewritten as

Ul = (U —tana)/(1 + ¥, tan ). (5.6)

On the other hand, in the oblique impact of hard disks accompanied by gross slip
on the surface, ¥§ is represented by

g = g~ 3(1+ ea)ta (5.7)
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in the two-dimensional situation[31]. In Eq.(5.7), p. is defined by p, = |J -
to|/|J - n,| and expressed as

ll = m_ (5.8)

— ptan

Here, 1, is the coefficient of sliding friction without deformation of the wall. To
draw the solid line in Fig.5.2, at first, we calculate ;. and tan « respectively for
each W¥,. Then, we calculate U'¢ and ¥$ by Egs.(5.6) and (5.7), and obtain e by
substituting them into Eq.(5.5) for each ¥,. We assume e,, is a constant less than
1. The solid line of Fig.5.2 is Eq.(5.5) with e, = 0.95 which is the value in the
normal impact. All points are interpolated with cubic spline interpolation method
to draw the theoretical curve. Such the theoretical description of e is qualitatively
consistent with our numerical result, though the theoretical value is smaller than
the observed value.

0.065

Simulation %~
Theory ——

0.06 ¢
0.055+
0.05}

H 0.045¢
0.04+
0.035¢+

0.03 ¢

0.025

0 i 2 3 1 5 6 7

Figure 5.4: Numerical and theoretical results of the relation between ¥, and .

9.3 uvs Uy

Finally, we explain the dependence of x upon W, by a phenomenological the-
ory. In our model, the roughness at the surfaces of the wall and the disk is
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important[79]. We assume that the tangential velocity of the disk is decreased by

7, when the disk interacts with one jag on the surface of the wall. The length that

the disk slides within a duration is estimated as v;(0)¢; ~ v;,(0)m(R/c)+/In (4¢/v,(0)),
where we use the expression of ¢; in Ref.[39]. Assuming that jags are placed on

the surface of the wall uniformly and have same size, the tangential velocity after
collision is calculated as v;(t;) = v;(0) — npv,(0)7(R/c)\/In (4c/v,(0)), where

p is the number of jags on the unit length. The tangential impulse .J; is given by

R 4c
Jp=— 0)] si —y/In | —— 5.9
t m77,0|V( )|Sln’7ﬂ—6\/n<|v(0)|COS’y> ( )
while the normal impulse is given by J, = —m(e + 1)|v(0)| cos~y, where we
use v, (t;) = —ev,(0). We assume that the tangential impulse decreases by .J, =

—m(|v(0)] siny, where ¢ is a proportionality constant, from the effect of the local
deformation of the wall. Thus, . can be represented by the ratio of |.J, — .J;| to
|Jn] @s

R 4
= Ctanv—ntptanwrz\/ln (W)‘/(ele). (5.10)

In this expression, e is the cross point in Fig.5.2 for each ¥;. ¢ and 7;p are
fitting parameters. The solid curve in Fig.5.4 is Eq.(5.10) with fitting parameters,
¢ = 0.397 and n;p = 0.163¢/ R, which reproduces our numerical result. We do
not claim that our simple argument explains the experimental result because of
some fitting parameters. However, we would like to emphasize that our picture
captures the essence of the physics of impact.

5.4 Discussion and conclusion

Let us discuss our result. First, we emphasize that the novel phenomena of e
exceeding unity are obtained from the local deformation of wall for the oblique
impacts of a hard disk on a soft wall. When we simulate the impact between a
disk and a hard wall, when £{) = 10 x k¥, e takes almost constant value to
exceed unity abruptly around ¥, = 4.5(Fig. 5.5). This tendency resembles the
experimental results by Calsamiglia et al.[43]. Thus, for smooth increase of e to
exceed unity, the wall should be softer than the disk. In addition, it is important
to fix the initial kinetic energy of the disk. So far, we have confirmed that e does
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Figure 5.5: The relation between ¥, and ;. in the case of hard wall.

not exceed unity when W, is controlled by changing v, with fixed v,[79]. In that
case, the initial kinetic energy of the disk becomes large for the large W, so that
the local deformation of the wall is easy to collapse in the grazing collision.

The second, the initial velocity of the disk and the local deformation of the
wall are much larger than those in the experimental setup in Ref.[30]. This is
the most significant difference between our result and that by Louge and Adams.
Because of the high speed impact, there is a peak of e for small ~. In fact, out
simulation with v = 0.01¢ shows the shift of the peak for larger . Therefore, we
expect that our model reproduces the result of Ref.[30] for low impact speed. In
addition, we have carried out other simulation with a disk of 400 mass points and
a wall of 2000 mass points to investigate the effect of the system size. Although
there is a slight difference between the results, the data can be also reproduced
quite well by our phenomenological theory.

The third, the local deformation of the wall also affects the relation between p
and ¥,. In early studies, it has been shown that ;. depends on the impact veloc-
ity [7, 30]. In our simulation, the magnitude of « has a peak around ¥; = 3.0.
This behavior is interpreted as that the local deformation collapses with large v,.
We derived in this letter the relation between 1 and ¥, by Eq.(5.10). By control-
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ling ¢ and 7,p, Eq.(5.10) shows monotonic increase like the result of Louge and
Adams[30](see Fig.5.10). The difference between the results of their experiment

0.11

0.09

0.07¢

u

0.05¢

0.03

0.01
Wy

Figure 5.6: The relation between W, and p in the case of ( = 0 and np =
0.014¢/R in Eq.(5.10).

and our simulation may be explained by the choice of these parameters.

Fourthly, we draw the solid line in Fig. 5.2 on the assumption that e = 0.95.
When we calculate e* in Eq. (5.5) from the definition e* = —(v(¢;) - n,)/(v(0) -
n, ), the comparison between our numerical results and Eq. (5.5) becomes as Fig.
(5.7). Also in this case, the agreement seems to be fair.

In final, we adopt the static theory of elasticity to explain our numerical results
in this chapter. However, it is important to solve the time-dependent equation of
the deformation of the wall surface to analyze the dynamics of impact phenomena.
The dynamical analysis is our future task.

In summary, we have carried out the two-dimensional simulation of the oblique
impact of an elastic disk on an elastic wall. We have found that COR can exceed
unity in the oblique impact, which is attributed to the local deformation of the
wall. We have estimated the magnitude of the local defomation o based upon the
static theory of elasticity and derived the relation between e and W, by taking into
account the rotation of the normal unit vector of the wall surface. The relation
between p and W, is also related to the local deformation and explained by the
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Figure 5.7: Numerical and theoretical results of the relation between ¥, and e
when e® is not a constant.

simple analysis assuming the decrease of the tangential impulse proportional to
the initial tangential velocity of the disk.
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Chapter 6

General discussion

In the dissertation, we carried out two-dimensional simulation for both normal
and oblique collisions of elastic disks on elastic walls. We confirmed that our
numerical model can reproduce some experimental results and phenomenological
theory. Here, we give a general discussion of our analysis.

Through the dissertation, we used the numerical model based on mass-spring
model[68], although there exist some numerical models like FEM. Our model is
intuitive and easy to modify the initial condition. However, the model has disad-
vantages that calculation takes long times as the number of mass points increases,
and the numerical result strongly depends on lattice structures. The number of
mass points is in the range between 1000 and 5000. As shown in chapter 4 and 5,
the number of mass points in the random lattice model is adequate to reproduce
the experimental results. The triangular lattice model and square lattice model
cannot reproduce the experimental results although they have same number of
mass points. This difference may be attributed to the polygonal shape of the sur-
face due to poor number of mass points. The regular lattice model with adequate
number of mass points may reproduce experimental results as in the case of the
random lattice model.

In addition, we performed two-dimensional simulation in this dissertation. We
also need to perform three-dimensional simulation to compare the numerical re-
sults with experimental results. When we extend our model to three-dimensional
model, the results may completely differ because elastic wave after collision will
propagate in three-dimensional directions. To construct three-dimensional numer-
ical model is our future task.

We started this work to investigate the dominant mechanism of energy dis-
sipation in inelastic impacts originally. The present model can reproduce some
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experimental results although it does not contain energy dissipation mechanism
such as viscosity. In chapter 5, we have attempted to introduce dashpots in the
spring interaction as the maxwell model of viscoelasticity. However, there is little
difference between results in both cases. This may be attributed to the large im-
pact velocity such as v = 0.1¢. Similarly, it has become clear that the existence
of gravitational field does not affect our numerical results. In the range of small
impact speed, the effect of such mechanisms may become prominent.

In the dissertation, we did not discuss thermal conduction arisen from inelastic
impact while we discussed the effect of initial temperature of colliding material.
In the analysis of Gerl et al.[37] and Morgado et al.[34], they carried out the
analysis based on the assumption that the colliding disk is uniformly thermalized
in the duration. However, it is clear that there exists thermal conduction during
impact. For example, in Ref. [16], it is shown that an increase in temperature is
produced at contact point in the experiment of binary collision of metal. It is also
shown that temperature rise is higher when curvature radius of colliding material
is small. It seems to be interesting to investigate numerically and theoretically the
amount of energy transformed into heat during collision.

In chapter 2, we compared our numerical results with the analysis based on
plastic deformation [24, 25] although our model does not include the mechanism
of plastic deformation. We regarded the irreversible deformed state after collision
(see Fig. 2.10(a)) as plastic deformation. It may be needed that we include the
mechanism of plastic deformation, such as breaking rule for springs, in our model
and compare numerical results with the theory.

In chapter 5, we explained the relation between the incident angle and the
coefficient of friction based on the static theory of elasticity. Our analysis is based
on the assumption that static theory is valid at any instance in the dynamic impact
process. We need to represent the dynamics of the wall under impact and compare
the result with numerical results.

In chapter 4 and chapter 5 we have carried out impact simulation using the
random lattice model. However, we have not shown the reliability of the model
although we have shown its consistency with early experimental results and phe-
nomenological theories. In the next sections, we will discuss the reliability of the
model by comparing with the existing theory introduced in this dissertation.

60



6.1 Comparison with the Hertzian contact theory

Here we introduce dissipation in the model and let the disk be in contact with the
wall. We measure the relation between the compressive force P and the macro-
scopic deformation £ to compare the results with the two-dimensional contact
theory of Hertz.

As shown in chapter 1, the relation between the compressive force P and the
macroscopic deformation & of spherical bodies in contact is represented by & o
P?/3 in three-dimensional situation[49]. In contrast, in two-dimensional situation,
the relation between the compressive force P and the macroscopic deformation &

is represented by
p ATER B )

where £ is Young’s modulus, v is Poisson’s ratio, and R is radius of a disk[37].
In our model, b is nearly equal to 1 because of v = 0.075 in our case.

At first, we put the disk in a gravitational field. The wall is expressed by an
exponential function. In this situation, equation of motion for i-th mass point is
described as

d’r; al . P
m d12 = ; {_kaxij - kbxfj — Nais (Vi — Vj)} + aVpexp(—ay;)y — Ny,
(6.2)

where v; is the velocity of i-th mass point and NV is a total number of mass
points. Here we used 74 = 1.0 x 102M/(R/c) which is introduced to relax
vibrational motion of the disk, and N = 1099. After a period of initial oscilla-
tion the disk reaches a static state (see Fig.6.1). We changed the value of P from
4.0 x 1073mc? /R 10 1.0 x 10~*mc?/ R and measured macroscopic deformations
¢ which is defined by |R — R'|, where R’ is the distance from the center of the
disk to the contact patch.

Figure 6.2 is the relation between P and £ in which the cross points are our
numerical results and the solid line is Eq.(6.1) with b = 1.55. If we take more
sample by changing configuration of mass points in the disk and average the data,
data may be fitted precisely with more adequate fitting parameters. However,
we would like to emphasize that our results can be fitted by the two-dimensional
Hertzian theory.

61



<>

LS 4!{%4%
Ay

i
o
AN

Figure 6.1: The disk is in contact with a potential wall

6.2 Comparison with quasi-static theory

Here we demonstrate the normal impact of the disk on the potential wall with
low impact speed and compare the results with quasi-static theory[26]. In the
two-dimensional case, as is shown in Eg.(1.12), COR may be expressed by

(6.3)

e~d \/1 S
! VIn(4e/v)’

where di =1 and dy = QWToE*/(pRC).
We solve equation of motion for each mass point of the disk,

dQ r;

7z

N;
Z {_kaxzj - ka?j — Nais(Vi — Vj)} + aVp exp(—ay;)y (6.4)
j=1

with initial velocity from 3.0x 10 R/c 10 5.0 x 102 R /c and calculate coefficient
of restitution for each initial velocity. We adopted 74;s = 100m/(R/c).

Figure 6.3 is the relation between initial velocity and coefficient of restitution.
The data are fitted by Eq.(6.3) with d; = 1.24 and d, = 1.08. If we take more

62



0.07
0.065 |
0.06}
0.055 |
gR 0.05}
0.045|
0.04}
0.035} x

0.03Lx— : - : :
0.004 0.005 0.006 0.007 0008 0.009 0.01

P/(TRE)
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sample by changing configuration of mass points in the disk, data may be fitted
precisely with more adequate fitting parameters. Here, we would like to claim that
our data can be fitted by the quasi-static theory. This is also indirect support of
our model which is consistent with the Hertzian contact theory.
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Chapter 7

General conclusion

In the dissertation, we have carried out two-dimensional simulation of inelastic
impact.

At first, in chapter 2, we performed the normal impact of the triangular lattice
disk on the structureless wall expressed by an exponential function. In our sim-
ulation, COR decreases as the normal impact velocity increases as experimental
tendency. The relation between normal impact speed of colliding disk and COR
cannot be reproduced by the quasi-static theory which is the standard method to
describe low speed impact. However, the relation between the duration and the
impact velocity can be well reproduced by the two-dimensional Hertzian contact
theory. COR showed the abrupt decrease around the critical impact velocity by
the plastic deformation. The critical velocity of the plastic deformation seems to
obey a simple linear function of temperature.

In chapter 3, we performed the simulation of the normal impact of an elas-
tic disk and an elastic wall. When the initial velocity is fixed, COR of the disk
decreases as the thickness of the wall is thickened as the experimental results by
Sondergaard et al..

In chapter 4, we performed the simulation of the oblique impact of an elas-
tic disk and an elastic wall to investigate the relation between the incident angle
and the coefficient of tangential restitution. From the comparison between our
numerical results and Walton’s argument of oblique impact, the maximum value
of the coefficient of tangential restitution, 5, takes a positive value, which means
that rotational motion can be generated after an impact. To generate rotational
motion, roughness on surfaces of the model is very important. With roughness on
surfaces, we can reproduce a realistic rotational motion after collision without any
dissipation mechanism.
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In chapter 5, we reproduced the experimental setup of the experiment by
Louge and Adams[30] and showed the anomalous behavior of COR against the
incident angle with the aid of similar model to that in chapter 4. In the case of
soft wall, the local deformation on the surface of the wall will make the trajectory
of the rebounded disk deflect from the expected direction. This makes COR ex-
ceed unity in the large incident angle. The relation between the incident angle and
COR can be explained by our phenomenological theory. In addition, it has been
confirmed that the coefficient of friction affect the relation between the incident
angle and COR. The behavior of the coefficient of friction against the incident
angle can be well reproduced by our phenomenological theory.
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Appendix A

Walton’s collision model

In this appendix, we review the Walton’s model of the oblique impact in detail
[31, 32, 80, 81]. Here, we restrict our interest to the slip region in oblique impacts.

Figure A.1 depicts a situation of a binary collision of objects 1 and 2. Here,
objects 1 and 2 are colliding each other with initial velocities v, and v, and angu-
lar velocities wy and w-, respectively. We denote the velocity of the contact point
asv(©, and v{? and v\ as v = v(© .nand v{? = v(9) ., respectively. Normal
unit vector to the tangential plane n is

N —ry
n

=— (A1)
T — 13

where r; is the vector to the center of particle 7 (i = 1, 2) and tangential unit vector

for their contact t is vertical to n. The angle of incidence -y is defined as the angle

between n and v(©). For simplicity, we assume that they have same mass m and

radius R. The conservation laws for the impulse P and the angular momentum

—Rn x P lead to

AP =m (v/1 - vl) =-m (v/2 - V2) (A.2)
—n x AP = é <w/1—w1) :é<wl2—w2>,

where I is the moment of inertia and AP is the change of impulse.

Now we calculate the normal and tangential components of the change of
impulse, AP, respectively. At first, the relative velocity of the contact point v()
is expressed as

v =v, — vy — (Rw; + Rws) X n. (A.3)
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Figure A.1: The schematic figure of binary collision.

Next, we express AP as the combination of v and v!?’. The normal component
of the change of impulse can be calculated from (A.2) as

AP, = —%(1 +e)vio. (A.4)
Here, we used the definition of normal COR, vff)' = —evff). We assume that the

tangential change of impulse satisfies

(A.5)

b

‘APEC)

= Ho ‘AP%C)

where 1 in the coefficient of friction for large v impacts. This assumption leads
to

AP, = [AP (| t = —po - (1 +€)v cost. (A6)

Here, we used |v.”

= v(©) cos. Using the definition of t, t = v!?/ ‘vt(c)

vi9 /4 sin v, (A.6) becomes

m c
APy = —E,uo(l + e) cot fyvi ), (A.7)
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Therefore, from (A.4) and (A.7), AP can be expressed as

AP = —%(1 +e)vio — %No(l +e) cot yvi?. (A.8)

From (A.8), one can express the rebound velocity of contact point v(¢)’ as the
combination of v{” and v{*. v(9" can be expressed from (A.2) and (A.3) as

/ 2 2R?
v = vO 4 ZAP ¢ iAPt
m I
R? ¢

= —evld — (—1 + po(1 + e) cot y (1 + ml )) v,g ) (A9)
where we used (A.7) and (A.8). From the definition of 3, v{¥" = —v?, we

obtain

R2

B=—1+pu(l+e) cotfy<1+ml ) (A.10)

for slip region of oblique impacts.
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Appendix B

The Theoretical description of the
obligue impact

B.1 Theequation of motion

In this appendix, we review and rewrite the theory of oblique impacts[29, 27, 28]
for our investigation. Let us consider a collision between a disk with the radius R
and a rectangle with the hight 2 ? and the width 8 R at the contact point denoted as
C'. In the subsequent discussion, the disk and the wall are assumed to contact at C
in the total collision process though they contact each other on a line in practice.
When comparing the theory with our numerical results, we average all positions
of particles on the contact line to define the position of the contact point C.

We assume that the first contact begins at the time ¢ = 0 (Fig.B.1) and com-
pression and restitution periods terminate at t = ¢, and ¢t = ¢, respectively. In
the total collision process, we define relative velocity and displacement of a disk
at the contact point C' to a rectangle as v; and u; (i = z, z), respectively. A disk
and a rectangle have masses M and M and their radii of gyration ky = R/V2
and kr = R/17/3 around their centers of mass, respectively. The prime denotes
parameters for the rectangle. The position of the contact point C' is denoted as
(rs,7.) = (0,—R) or (r,,r,) = (0, R) which are measured from the centers of
mass of each colliding body. We assume that both normal and tangential elements
of the compliance are proportional to the compression. We also introduce the
normal stiffness during compression «, and the tangential stiffness during com-
pression «/n? for the disk. The equation of motion of the displacements, thus,
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2R ® M’

8R

Figure B.1: The schematic figure of the disk and the wall. A cross in a circle
represents a center of mass of each body.

éj‘/m _ -1 ﬂl‘n_z 0 Ug
()= 2)(2)

where ii, = d?u,/dt*>, m = MM /(M + M'), and

becomes

mr2  mr” mr2  mr’
Be=1+ AZ2+ iza B, =1+ A:c2_}_ :fz- (B.2)
ME: MK ME: M'E

In our situation, 3, and 3, can be calculated as 3, ~ 3.02 and 3, = 1.
Equation of motion (B.1) has two characteristic frequencies, €2 and w, which

are expressed as
Q=% wzd%ﬁzlﬂﬁg (B.3)
m nm- n\ B

in the normal and tangential direction to the wall, respectively. One can also
express them using ¢., the time when the normal velocity of compression be-
comes 0 (u,(t.) = 0), as Q = «/2t. and w = (7 /2nt.) \/B:/B.. According to
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Johnson[25], stiffnesses in the normal and tangential direction, x and x/n?, can
be expressed using Young’s modulus F, the radius of punch a, and Poisson’s ratio
v as

Fa 2Fa

_ 2 _
K=1"m PEDIED)) (B4
Thus, n can be expressed only by the Poisson’s ratio,
2—v

Here we define the coefficient of restitution for subsequent discussion. The
coefficient of restitution is defined as

D= (tf) — Pz (tc)
po(te)

where p,(t) is the normal impulse. We can show that e, is equivalent to the
conventional normal coefficient of restitution e. wv,(¢) is the normal velocity,
and vy is the initial normal velocity. This leads to p,(tf) = (1 + e.)p.(t.) and
t; = (1+e,)t.. Inthe later discussion, we assume that the effect of the coefficient
of restitution e, is obtained by changing the stiffness of the normal compliant
element from x to x/e? at t = t.. Thus, from Eq.(B.3), the normal frequency
increases from Q to /e, att = t.

(B.6)

e, =

B.2 Velocity and force of the contact point

To obtain the relation between the tangential coefficient of restitution g and the
angle of incidence ~, we take into account that the motion of the disk during
collision depends on the angle of incidence. According as - increases, the motion
of the disk during collision is classified into three regions: (i) The disk sticks
initially and begins to slip at t = ¢;. (ii) The disk slips until ¢ = ¢, and sticks for
ty < t < tzandthen it slips again until t = ¢;. (iii) The disk slips during collision.
We need to calculate the initial and terminal velocities of the contact point of the
disk in each region. For the initial and terminal velocities of the disk, we have to
calculate t;, o, and ¢3 from the force acting on the contact point. In this section,
we show how to obtain normal and tangential components of velocity and force
and how to calculate ¢, in the region (i).
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Table B.1: Normal displacement, velocity, force, and impulse

Quantity Compression (0 < t < t,.) Restitution (. <t < ty)

Displacement  u,(t) = —Q v, (0) sin Q¢ u,(t) = —e2Q10,(0) sin (m +5(1— e;l))
Velocity v,(t) = v,(0) cos Ot v,(1) = €,0,(0) cos (Qt +I(1- 6*1))

Force F,(t) = vaZ sinQt >0 F,(t) = %Z() sin (?f T(1—e; )) >0
Impulse P (t) = — ™t (1 —cos Q) pi(t) = "0 (1 — e, cos (e—t +I(1- e;l)))

B.2.1 Normal components of velocity and force

By solving Eq.(B.1), we can obtain normal components of velocity and force.
Assuming v, (t) + 4,(z) = 0 during contact, we obtain

oa(t) = { v,(0) cos Qt 0<t<t (B.7)

v, (0) cos(Z + 3(1—e.h) to <t <ty.

*

Assuming that the normal frequencies during restitution is /e, and the initial
conditions v,(t.) = 0 and v,(t;) = —e.,v,(0), we reach the exact form of solu-
tion during restitution period. (B.7) is continuous at ¢ = t.. By differentiating
these expressions, we also obtain the displacement u, (¢) , the force F,(t), and the
impulse p,(t) as described in Table B.1.

B.2.2 Tangential components of velocity and force

Let us consider the region (ii). We assume that a disk slips on the surface of
a rectangle during collision and starts sticking at ¢t = ¢,. Att = t,, assuming
Coulomb’s law of friction, the relation between F, and F, becomes |F,| < pF,
where 4 is the coefficient of friction. We calculate the expressions for tangential
components for sticking and slipping separately.

While a disk slips on the surface of a rectangle, the relation between F, and F,
is |F,|/F, = u and the tangential velocity is changed by a impulse arising from
contact force. Thus, the change of velocity can be described as

(1) == [ S)(Pm) e oo

74



where sgn(x) = +1 for z > 0 and sgn(z) = —1 for x < 0.

When a disk starts sticking at ¢ = ¢,, the tangential oscillation starts with
frequency w. We assume v, (¢) + u,(t) = 0. By solving the equation of u, (), we
can obtain the tangential components of displacement, velocity, and contact force
as

ug(t) = ug(ty) cosw(t —ty) — w™ v, (ty) sinw(t — ty)
Wy (ty) sinw(t — to) + v, (t2) cosw(t — to) (B.9)
F,(t) = mB, wu,(ts) cosw(t — to) — mpB, 'wv,(t) sinw(t — t5) t > to.

<
8
—~

~+
N

B.2.3 Obtaining the transition time, ¢,

Let us consider the region (i). From (B.9) with the condition u,(0) = 0 and F,(¢)
described in the Table B.1, ¢; can be obtained by solving the equation

1 v,(0) Qsinwt; ) 0<t <t
|Fo(t)] ) 72 pw,(0) wsin Qt _ - (B.10)
() | L w(0) @ st Wi =1 t, <t <ty

2 p2(0) wsin(2 + (1 — e, 1))

Solving these equation numerically, we obtain #;. It should be noted that there are
two conditions if ¢; is greater or smaller than ...

The process of initial stick takes place if £, > 0, i.e. if in the limitas¢; — 0
the force ratio between the tangential and normal component is smaller than .
This requires

v2(0)

2.(0) < un?. (B.11)

B.3 Threeregimes of the angle of incidence

Here, we divide all region of the angle of incidence into three regimes and cal-
culate the tangential component of terminal velocity of collision for each regime.

(i) Small angle of incidence: v,(0)/v,(0) < un?
In this regime, initial stick continues until ¢ = ¢; and slip terminates at ¢ =
t;. At time ¢, the tangential component of the relative velocity is v,(t;) =
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v,(0) coswty. From Eq.(B.8), the terminal tangential velocity can be expressed
as

vy (ty) = v5(0) coswty — %ﬂx[pz(tf) — p.(t1)], (B.12)

where p,(ts) — p.(t1) can be expressed as

mvzﬂ(zo)e*{l + cos( .

from Table B.1. Dividing Eq.(B.12) by —uv,(0) leads to

+30-N)) By

pZ(tf) _pZ(tl) = -

B = —coswti(y) — u%e* [1 + cos <Qt;(7) + g(l - e*l)ﬂ cotvy, (B.14)

where (3 is —uv,(ts)/v,(0) and cot vy is v, (0) /v, (0).

(ii) Intermediate angle of incidence: n? < v,(0)/v,(0) < pu(1+e,)B:/0-

In this regime, the disk initially slips and begins to stick at ¢ = ¢,. After the
period of sticking, the disk begins to slip again at ¢ = ¢3. In the period ¢ < ¢, the
tangential component of relative velocity is written as

O
m
Here let us calculate ¢, and ¢3. Att = t,, subsequent sliding and stick give the
same rate of change for the tangential force:

dFm (tQ + 6)

11 2 (tg 6)
de

lim
e—0 e—0 d€

. (B.16)

This is the condition which determines ¢,. To simplify this condition, we need to
obtain the exact forms of dF(t)/dt and dF,(t)/dt.

For tangential components of force, if one differentiate Eq.(B.9) by ¢, we ob-
tain

dF,(t)  mwiug(ts)

e 3, sinw(t —ty) —

mw?v,(ts)

Ba

cosw(t — ta) t>ts.
(B.17)
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Here, v,.(t) is represented by Eq.(B.15) and with the aid of Table B.1, and () is
obtained from v,.(¢) + 4. (t) = 0. Thus, the explicit expressions are

walta) = v,(0) — ,ug—:vz(O)[l — cos ts] ty < t.
v,(0) — ,ug—:vz(O) [1 — cos (% +Z(1 - e;l))} ty > t,
B2Qv.(0) .
MW Sin Qtz, tz S tc
Uy(to) = S B.18
2(t2) {Mﬂz%u}(()) sin (%z +I(1- e;l)) ty >, ( )

For normal components of force, by differentiating the expressions of normal
components in Table B.1, we can obtain

dF,(t;) | —=B7"Q%mu.(0) cos Qt, ty < t.
dt {_792;“11;1(0) cos(22 + Z(1 —e;")) fy >t (B:19)
From (B.17), (B.18), and (B.19), Eq.(B.16) leads to
e (MU o e
QtQ . m _ Um(o)//“)Z(O) - /Bm//Bz U:L‘(O) ﬂm
o = —5(1 —e;') + arccos ( e — ouB 5. ) 2.(0) > ME

In the period ¢, < t < t3, the velocity and the force are expressed as Eq.(B.9).
This period of stick terminates and slip begins at time ¢ = ¢3. ¢3 can be determined
by the condition |F,|/F, = u. From Eq.(B.9) and Table B.1, this condition leads
to

QUI (tg)
10 (0)

Q’Um (tg)
wpiv,(0)

Q
t3+ﬁ(1—e;1) .

€4 2
(B.21)

Solving this equation numerically, we obtain ¢;. The final tangential velocity is
expressed as

COSu)(tg — tz) — sin w(t3 — tz)

= n%sin [

'Um(tf) — Um(t3) - Mﬂmmil[ z(tf) - pz(t3)]7 (822)
where p, () is expressed in Table B.1. Dividing (B.22) by —wv,(0), we obtain
B =—cosw(tz —t3) — M%[COSW(tg — tg) — cos Qty cosw(ts — to)

: (B.23)
Q . .
+ —sin Qty sinw(tz — ta2) + e + cos Qt3] cot .
w
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(iii) Large angle of incidence: v,(0)/v,(0) > pu(1 + e.)B3:/5.
In this regime, slip does not cease before separation: ¢, > t;. At separation,
the tangential velocity v, (¢;) if as follows:

vz (ty) = v2(0) + Nﬂmmil(l + e.)p.(te), (B.24)
where p,(t.) = —mw,(0)/f,. Thus, dividing (B.24) by —v,(0), we obtain
B=-1+ u% (1+e,)cot . (B.25)
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Appendix C

Poisson’s ratio for a square lattice
system with next-nearest neighbor
Interaction

In this appendix, we derive the relation between elastic constants in continuum
limit and spring constants of a two-dimensional square lattice with nearest neigh-
bor coupling k; and next-nearest neighbor coupling ko(Fig. 4.4). The elastic
tensor C;;, for the two dimensional square lattice is represented as

Cxxxx - nyyy = kl + k27 (Cl)
Cfiyy = ny:l::l: = C:L‘yyzlr = Cyl‘my = Cmymy = Cymy:l: = ]{;27 (CZ)
and the other coefficients are zero[82].

Using the elastic tensor C;;; and the strain tensor «;; and wy;, The free energy
of the system U is represented as

1
U= §Cz'jkluijukl- (C-3)

Thus, we obtain the stress tensor o;; as
_w
Ouj
Now we introduce the unit vector n in the axial direction of the rod. When we
pull both sides of the rod with the pressure p,., the relation

0'1']'

= UijkiUki- (C-4)

Oik = PrNiNg (C-5)
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holds.
From egs (C.1), (C.2) and (C.5), the explicit expressions of the stress tensors
become

Ore = Copgallzs + Crayylyy = (k1 + k2)Uyy + koyuy, = p,n2  (C.6)

oy = Cyyastian + Cyyyyliyy = kotigy + (k1 + k2)uyy = pn  (C.7)

Opy = Cayaylay + Coyyatiyr = 2katzy = ppngny,. (C.8)
From these equations, we obtain the expressions of the strain tensors,

(lﬂ?l + kg)ni - kgnz

= C.9
Ugy DPr Ifl(lfl + 2/{72) ( )
(lﬂ?l + kz)nfj - kgni
= C.10
Yoy = Prg by + 2ks) (C.10)
NgN
wy = (C.11)

The strain in the direction of n is expressed as u = w;;n;n,. Thus, we have

U = umni + 2Ugynyny + uyynfj (C.12)
k1 + ko ky —2ky 5 4

= - C.13

{kl(kl Tok) t Rk P (©.13)

Therefore we obtain Young’s modulus as

l - kl + kQ kl —_ 2k2n2n2
B ky(ky + 2ky) kiky Y

(C.14)

On the other hand, the Poisson’s ratio v is defined as the ratio of the normal
strain to the vertical strain. The latter is described as

U = umnfj — 2ugyngny, + uyyni (C.15)
2(ky + 2ky)n2n2 — k 2n?
(b ),
ky(ky + 2ks) ko

Thus, Poisson’s ratio is given by

k2 + (k2 — 4k2)n2n?
J— 5+ (ki . 2)7%72%/ — (C.17)
kg(kl + k2) + (lfl - 4k2)nxny
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Appendix D

Contact of a hard disk on an elastic
half-space

In this appendix, we briefly explain the derivation of Eq.(5.3) following the text
book of Hills[51].

Let us consider two cylinders with radii R; and R, pressed together, which
may be treated by two-dimensional Hertzian contact theory. If we express the
pressure distribution as p(x) , the macroscopic deformation 4 can be described by
following equation[51]:

o= [ B brta), o)
where
1—v? 1-1v2
Ay:2< o + 7 ), (D.2)
. 1(1-'—1/1)(1—21/1)/E1—(1—|—V2)(1—21/2)/E2
b= 3 A= ?)/E+(1—1)/E - B3

The second term of the right hand side of Eq.(D.1) assumes Coulomb’s friction
law by introducing Coulomb’s friction coefficient ;. The integral of Eq.(D.1) is
carried out over the contact area. External normal force P is defined by

= [ pe)ae (D.4)
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Assuming the load is sufficiently small for the contact area 2q, the relative normal
approach of cylinders within the contact can be approximated by the parabora as

h(z) = C — ke(z — 2.)?/2, (D.5)

where C'is a maximum approach, k.. is the relative curvature givenby k. = 1/R;+
1/R,, and z. is the x coordinate of the top of the cylinder. If we assume the body
1 as arigid disk by letting £/ go to infinity and the body 2 as a elastic half-space
by letting R- go to infinity and replacing v, by v, 5y and k. become

1—-2v 1

and k.= —. (D.6)

ﬁy:?(l—u) R

From Eq.(D.1) and (D.5), we can obtain

1 p(&)dé _ —he(z — )
- DR+ By = = (D.7)
By introducing scaling patameters, = = as and £ = ar, Eq. (D.7) becomes
1 Y p(r)dr —kex. + keas
-/ POy pps) = e Hheas (D.9)
mJ_ 4 1r—Ss v

From the general solution of a Cauchy singular integral equation of the second
kind[51], we obtain

p(s) = — (kc—a sinmm(1 —s)™(1+ s)1m> : (D.9)
Ay
where tan(mm) = L 0<m<1, (D.10)
Py

which is accompnied by the consistency condition,

' (s —at)ds B
/1 (1—s)m(1+s)l-m 0, (D.11)

where z¥ = z./a. Eq.(D.11) yields

xt=2m— 1. (D.12)
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By substituting x, = —a and [, = 2a into Eq.(D.12), we can obtain Eq.(5.3).
External normal force P is calculated as

1
P = —/ p(s)ds
-1
2 _
_ 2k m(1 m) (D.13)
Ay
From Eq.(D.9) and (D.13), we obtain
Psinmm m —m
p(s) = (1—s)"(1+s) ™ (D.14)

~2ram(1 —m)

In the case of m = 1/2(x = 0), which means that there is no external shear
force, Eq.(D.14) is identical to the result from two-dimensional Hertzian contact
theory[49].
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Appendix E

The Chronological table of impact

studies
Year | Literature Contents
1600
87 | I. Newton, Principia Introduction of COR
1800
34 | E. Hodgikinson, Brit. Assoc. Report, 4, 535 COR of various materi-

82
92

1900

00

06

18

34

40

H. Hertz, J. Reine Angew. Math, 92, 156

A. E. H. Love, A Treatise on the Mathematical The-
ory of Elasticity(1st ed.)

J. H. Vincent, Proc. Cambridge, Phil. Soc. 10, 332
O. M. Rayleigh, Philos. Mag. Ser. 6 11, 283

C. V. Raman, Phys. Rev. 12, 442

S. P. Timoshenko and J. N. Goodier, Theory of Elas-

ticity(1st ed.)

R. D. Mindlin, J. Appl. Mech., 16, 259

als

Contact theory
Impact  theory
Hertz(A text book
theory of elasticity)

COR as a function
impact velocity
Vibrational analysis
Photographic study
COR’s dependency
impact velocity
Impact  theory
Hertz(A text book
theory of elasticity)

of
of

of

of
on

of
of

Tangential contact force
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Year

Literature

Contents

53

60

76

81

84

86

87

95

96

97

98
99

2000
00

03

L. D. Landau and E. M. Lifshitz, Theory of Elastic-
ity(1st ed.)

W. Goldsmith, Impact: the theory and physical be-
havior of colliding solids (London:Arnold)

N. Maw, J. R. Barber, and J. N. Fawcett, Wear, 38,
101

N. Maw, J. R. Barber, and J. N. Fawcett, J. Lub. Tech,
103, 74

F. G. Bridges, A. Hatzes, and D. N. C. Lin, Nature,
309, 333

K. L. Johnson, Contact
bridge:Cambridge Univ. Press)
G. Kuwabara and K. Kono, Jpn. J. Appl. Phys., 26,
1230

J. Schéfer, S. Dippel, and D. E. Wolf, Phys. Rev. E,
52, 4442

Mechanics (Cam-

N. Brilliantov, F. Spahn, J.-M. Hertzsch, and T.
Poschel, Phys. Rev. E, 53, 5382

W. A. Morgado and I. Oppenheim, Phys. Rev. E, 55,
1940

T. Schwager and T. Pdschel, Phys. Rev. E, 57, 650
R. Ramirez, T. Poschel, N. V. Brilliantov and T.
Schwager, Phys. Rev. E, 60, 4465

W. J. Stronge, Impact Mechanics
bridge:Cambridge Univ. Press)

M. Y. Louge and M. E. Adams, Phys. Rev. E, 65,
021303

(Cam-

Impact  theory  of
Hertz(A text book of
theory of elasticity)
Textbook of impact

Theory of oblique im-
pact

Theory and experiment
of oblique impact
Impact experiment of
ice spheres

Text book of contact
mechanics

Quasi-static theory

Comparison of force
schemes used in simu-
lation

Quasi-static theory

Quasi-static theory

Quasi-static theory
Quasi-static theory

Systematic text book of
impact

COR exceeding 1 ex-
perimentally
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